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1 ‘. 

The research reported herein was motivated by the need in the aviation 
community for advanced turbulence simulation schemes that provide 
simulated turbulence time histories for flight simulation applications 
which satisfy not only the known second-order statistics of the atmos- 
pheric turbulence as in the state-of-the-art turbulence simulation 
schemes now being used by the aviation community, but'in'addition 
include information concerning higher-order statistics as manifest by 
the non-Gaussian nature of atmospheric turbulence. In this context, 
it is believed that'the work presented herein represents a major 
step forward in stochastic process theory as related to atmospheric 
turbulence simulation. However, it should be.noted that the results 
of this report, when used alone, are only applicable to the case in 
which an aeronautical'system is completely immersed in the,gusts; 
I.e., absence of gust gradient effects. In this regard, additional 
work is underway to develop gust gradient simulation schemes whereby 
the gust velocity time histories generated by the technique reported 
herein and the gust gradients simulated by the techniques now under 
development are applied with a Taylor series expansion (truncated 
at the first-order term) of the gust velocity vector field about the 
vehicle center of gravity, so that the gust environment at any 
point on the vehicle can be generated,during a flight simulation. 
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SUMMARY 

The method of simulating a turbulent time series by filtering a 

white noise series is consolidated and extended. The development of 

linear filters from empirical spectra is expanded for forms based on 

boundary layer similarity under stratification and for generalized 

spectral shapes. Some properties of the filters under various stratifi- 

cations, heights and viscosities are examined. The method of linear 

simulation is extended to multi-component processes by the diagonal- 

ization of the spectral matrix, spectral factorization of the 

eigenvalues, followed by a rotation involving a special unitary trans- 

formation. Results indicate that the addition of a cross-response 

Increases the total response. 

The method of simulation by filtering is extended to several non- 

linear, non-Gaussian models. These models are based on ad hoc approxi- -- 

mations of the kernel interactions. It is found that the method of 

separable kernels for a representation of velocity is inappropriate 

for simulating the characteristic inertial transfer of turbulent energy. 

However, the separable kernel representation of acceleration better 

approximates the energy transfer in the viscous subrange for suf- 

ficiently small Reynolds number. 

An evaluation of the linear and non-linear models, with computa- 

tions carried out in phase space, is included. Because the non-linear 

simulation method requires a more precisely Gaussian stimulating process 

than is commonly available, special generative techniques were developed 

and examined. Results indicate that non-linear simulations will re- 

quire large arrays of very nearly white, Gaussian noise in applications. 

xiii 



1.0 INTRODUCTION 

The increasing sophistication of design techniques in a variety of 

engineering and environmental applications requires the simulation of 

the statistical structure of wind gusts. As man-made structures have 

been made larger and more flexible, it has become imperative that the 

effects of the wind, both as a static and fluctuating force, be in- 

corporated in structural and economic designs. In addition, in 

response to increasing concern for the quality of the environment, the 

need to understand the wind-driven diffusion mechanism distributing 

air-borne pollutants through the atmospheric environment has in- 

creased. Fortunately, there exists a wealth of information about the 

statistical structure of the wind, particularly near the ground. How- 

ever, an important difficulty lies in incorporating such information 

into applications in a manner that is at once practical and realistic 

as it conveys important aspects of the meteorological dynamics of the 

problem. 

1.1 Statement of the Problem 

In this study, the method of incorporating the statistical 

structure of the turbulent wind field near the ground into applications 

is consolidated and expanded. 

The linear spectral representation of turbulence has provided a 

useful interface between the meteorologist and the engineer. Conse- 

quently, its properties, successes and failures are well known. The 

interest of the meteorologist has been generally centered on providing 
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the best possible estimates about the structure of the wind field, both 

as it relates to the vertical distribution of the averaged wind and‘to 

the spectral distribution of the fluctuating wind. 

Models to simulate turbulence which require the specification of 

the mean wind with height and thermal stratification vary in their 

sophistication and reliance on the principles of boundary layer simi- 

larity. As a result, the description of the vertical profile of wind 

has tended to be a potpourri of empirical relationships and approxima- 

tions. Because the numerous parameters which characterize turbulence 

in the atmospheric boundary layer have often not been measured 

simultaneously, the applicability of some empirical results is unknown. 

Accordingly, there is a need to consolidate aspects of the verti- 

cal structure of the wind, in order to have them consistent with known 

similarity properties of the flow, and to be able to incorporate fur- 

ther results as they become available. 

Another crucial feature of simulation models of turbulence near 

the ground is the approximation used for the spectral distribution of 

the variance in the fluctuating components of the wind, particularly, 

in the range of scales of size equal to or less than the distance, z, 

from the ground. Simulation models which lead to modeled realizations 

of the turbulence have required the so-called Dryden spectral form, 

which for sufficiently small scales varies as -2 k , where k is the wave 

number. This spectral form has no basis in theory or observations and 

has been chosen only for its analytical properties. Other applications 

not requiring modeled realizations have been based on the von K&m& 
-513 spectral form which tends to k , for kz >> 1, in accordance with 



3 

the well-known properties of the Kolmogorov inertial subrange. However, 

the von K&&-I spectrum requires the specification of a length with 

which to characterize the bandwidth of the spectrum, but this length 

parameter bears no known dynamical relationship to the structural 

properties of the turbulence in the atmospheric boundary layer. As a 

result, the implied spectral dynamics of von K&n&n's model cannot be 

determined by recourse to theoretical considerations of the boundary 

layer. The determination of such lengths must of necessity be made 

empirically. It remains to determine alternative spectral forms which 

are dynamically consistent with, say, the vertical profile of wind 

and dissipation determined by similarity arguments. 

It is also well known that the concept of a linear representation 

of turbulence in terms of a Gaussian, white noise process is inconsis- 

tent with the observed non-Gaussian and non-linear structure of the 

turbulence. In particular, linear Gaussian models are inadequate for 

the simulation of the large gust structure. Therefore, an extension 

of the representation of turbulence is considered in this study which 

systematically incorporates some basic properties of the non-linear 

and non-Gaussian probabilistic structure of the turbulence. The 

mathematical formulation of this extension is most conveniently based 

on a functional series expansion in terms of the simple and convenient 

Gaussian, white noise process -- the same as is used in linear modeling. 

The method of functional representation will be shown to lead 

naturally to a concept of a discrete gust form. As such, the method 

of the representation is superior to other discrete gust models where 

mathematically convenient, ad hoc forms are specified. Because here -- 
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the discrete gust form is a derived property of the process, a consis- 

tent formulation for the statistical structure of the turbulence in 

the boundary layer allows for a systematic analysis of this discrete 

gust form for various thermal stratifications and Reynolds number ef- 

fects. 

In summary, it is the purpose of this study to consolidate the 

simulation modeling of turbulence in the boundary layer in terms of 

boundary layer similarity principles and empirical results, and to 

extend the modeling for some aspects of the non-linear and non-Gaussian 

structure of the turbulence there. It is also the intention of this 

work to identify some properties of the discrete gust form structure 

of the modeled turbulence. 

1.2 Importance of the Problem 

The study of the structural effects of turbulence in the earth's 

boundary layer divides naturally into three main streams of research 

and development (1) the collection and assimilation of turbulence data; 

(2) the theoretical modeling of the statistical and dynamical nature 

of the turbulence; and (3) the development of methods by which to 

specify the response, structural or otherwise, to the turbulence. 

While a considerable effort has been made to measure, describe and 

model the flow field throughout the planetary boundary layer, the 

development of methods of application of this accumulated wealth of 

information has not been rapid. 

The need for applied models of turbulence near the ground is 

ubiquitous. The need is perhaps most severe in the design and opera- 

tion of aircraft and other aerospace vehicles. In aeronautical 
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operations, cross-winds and wind shear may on occasion present a hazard 

in the approach and landing etagee'of a flight. In addition to ques- 

tione of structural integrity and passenger comfort, the principal 

conceti of the designer is that the pilot may lose control as the air- 

craft is accelerated, or may aggravate the situation by initiating the 

wrong corrective procedure. The control problem is compounded for 

VSTOL aircraft and helicopters whose lift characteristics are more 

reneitive to the direction of air flow relative to the lifting surfaces. 

EIore recently, the need has developed to study the response of rockets 

to turbulence during launch because the wind fluctuations affect the 

stability and navigation of the vehicle. 

The concern about wind effects is shared by many other engineers. 

Turbulent buffeting of surface structurea, particularly of large 

flexible bridges and office towers, must be considered at the design 

stage. Further, the design of surface transportation systems and 

vehicles aleo require8 a specification of the range of probabilities 

of significant wind events and a method of estimating the response or 

result. Of interest, particularly in large urban areas, is the effect 

of turbulence in the diapersion of pollutant8 in the atmosphere. Yet 

another important area requiring the modeling of the wind field is 

that of water wave formation and maintenance, in as much ae the wave 

environment effects over-water transportation, recreation, and the 

dispersion of pollutants in or on the water. 

1.3 General Characteristics of Simulation Models 

Of course, not all requirements for simulating the statistical 

etruCture of the wind field can be met by developing a particular model. 
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For example, the methods used to simulate the dynamics of turbulence 

(Kraichnan, 1965; Herring, 1966; Deardorff, 1972a), while useful in 

testing the consequences of the approximations characterizing each 

mdel, are either not theoretically compatible with the inhomogeneous 

structure of turbulence in the atmospheric boundary layer or else are 

impractical to implement. 

The method found most suitable by engineers for simulating 

turbulence is the so-called spectral filtering, or forcing, technique 

pioneered by Liepmann (1954). The spectral filtering model essentially 

characterizes the response of an aircraft or structure, or any process 

driven by turbulence, as a signal derived by filtering a sequence of 

pulses uncorrelated sequentially whose amplitudes are derived 

probabilistically from a Gaussian distribution. The desirable property 

of the latter process Is the constant spectrum, which, from optics, is 

referred to as a white spectrum. Because of the wide variety of ap- 

licatlons (Houbolt, 1973), the method remains a useful technique. Its 

success to a considerable degree is attributable to its simplicity. 

The spectral filtering method, as the name implies, is based on the 

use of the spectrum of the atmospheric turbulence to characterize the 

flow field. The characterization of the spectrum over scales important 

to the application in turn requires specifying the spectral form as 

well as its variance and its bandwidth. Variations exist In the 

representation of the spectrum and its controlling variables (Teunissen, 

1970), and are discussed in more detail later. The mathematical 

details of the method are also postponed for later consideration. 

The simulated turbulence resulting from the linear filtering of a 

Gaussian process is itself Gaussian. However, turbulence is not a 
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Gaussian process (Dutton, 1970). In order to produce a non-Gaussian 

process which simulates turbulence from a white, Gaussian process 

requires non-linear filters. The introduction of non-linear filters to 

synthesize turbulence is 'a recent development (Reeves, 1969; Kurkowski, 

et al., 1971; Gerlach, et al., 1973). However, the non-linear models 

which have been developed suffer from a lack of consistency in terms 

of the observed, non-linear properties of boundary layer turbulence. 

Therefore, what is needed is a systematic methodology by which to 

introduce the observations of the-non-linearity of atmospheric turbu- 

lence into the filtering method. 

1.4 Structure of the Atmospheric Boundary Layer 

For a steady, horizontally homogeneous mean flow in the boundary 

layer, sufficiently near the ground, the vertical variation of the 

turbulence fluxes is negligible (Blacksdar and Tennekes, 1968); 

In particular 

T(Z)/Po = - uw = ux2 

and 

H(z)/po c - 3 = - u* T, 
P 

(1.4.1.) 

(1.4.2) 

are Independent of height. In (1.4.1) and (1.4.2), -r/p0 and H(z)/P, cp 

are the specific momentum and heat fluxes respectively; p, is the 

density of the air and c 
P 

the specific heat at constant pressure. 
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Equations (1.4-l) and (1.4.2) also serve as definitions for the 

characteristic velocity, u*, and temperature T,. According to the 

hypothesis of Monin and Oboukhov (1954) the structure of the mean wind 

shear and temperature gradient (sufficiently near the ground so that 

inertial effects due to the earth's rotation are unimportant) can be 

derived on the basis of dimensional arguments. That is, the mean 

shear and temperature gradient are given by 

and 

where L, the Monin-Oboukhov length, is 

2T 
L- u* 0 

g K T, 

(1.4.3) 

(1.4.4) 

(1.4.5) 

In (1.4.3) to (1.4.5), 'v is the mean wind speed, 8 the mean 

potential temperature, To the depth averaged boundary temperature, K 

(a similarity parameter) Is von K&&n's constant, and #m and $h are 

the similarity functions for the shear and the temperature gradient. 

It is convenient In what follows to define z/L by 

5 - z/L (1.4.6) 
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In fact, the Monin-Oboukhov hypothesis states that all statistics of 

tha turbulence eufficiently near the ground,. in diabatic situations, 

for ideal steady, horizontally homogeneous flows, become functions of 

C only, if velocitiee are scaled with u*, temperatures by T, and 

lengths by KZ. Accordingly the moment6 $, of the probabilistic density 

function of the lth turbulence velocity components are also functions 

of c, 

u; - q(r) (1.4.7) 

The spectral distribution, Q 
u 

, of variance or covariance over the range 

of wave numbers, K, for which there is any shear or buoyantly induced 

turbulence, becomes, under the appropriate scaling, 

k %j 
vj - Gij (f,S) (1.4.8) 

In (1.4.8), Si represents the appropriate scaling variable, u* or T,, 

and f, where 

f=Kzk (1.4.9) 

represents a normalized wave number. The use of subscripts 1 through 

3 assumes the standard meteorological usage (Lumley and Panofsky, 

1964) and the subscript 6 refers to temperature. 

For scales, f >> 1, such that the turbulence becomes asymptotically 

independent of the details of the mechanisms generating the turbulence 
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(Termekes and Lumley, 1972, Chapter 8), the spectra, G$i are similar, 

in the dense of dimeneionaf analysis, under the hypothesis of 

KelrPogorov (1941), 80 that 

Gii(f) - “i ii d (?a f-2’3 (1.4.10) 

Specifically, for a sufficiently large Reynolds number, defined by 

by - KZ U&J (1.4.11) 

where v is the kinematic viscosity, 

@ll = 422 - 933 - $ 6 2'3 63 

and 

(1.4.12) 

(1.4.13) 

The functions $x and 9, represent the similarity functions under 

Monin-Oboukhov scaling, for the dissipation rates of kinetic energy, 

C, and temperature variance, x, and are defined by 

‘b,(5) - KZ~U,~ 

and 

(1.4.14) 

(1.4.15) 
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A conriderable effort has been made by many Investigators to 

identffy the similarity etructure, both of the low order mments 

of turbulence near the ground, under diabatic condltione, aid of the 

spectral and co-spectral forum. An excellent summary and review is 

provided by several author6 in a monograph edited by Haugen (1973), 

and will not be duplicated here. A emmary of empfrical forms fot 

em, #h# #&, ex, and q, as functions of C, are given in Appendix A, 

aa well as empirical spectra and co-spectra, G 
kl 

, as function+ of 

r; and f. 

In order to utilize the similarity relationships of Monln and 

Oboukhov, it is neceerary to estimate the factors u* and T, by an 

Independent method. For a steady, horizontally homogeneous boundary 

layer, Kazaneki and Monin (1961) derived the resistance laws 

ln(G/fto) * 8 + In (G/u*) + (ICY G2/u12 - A 2 l/2 
) (1.4.16) 

and 

(1.4.17) 

In (1.4.16) and (1.4.17), G is the geoetrophic wind modulus and f is 

the Corlolie parameter ( - 20 sin $ where n ie the earth's angular 

velocity and Jc is latitude), u ie the angle between the dfrectlon of 

the surface rtrcre and the geoetrophic velocity, and z. is the surface 

roughness. The functions, A and 8, are similarity functions, which 

for diabatic conditions are hypothesized to be universal in the 

stability parameter, u given by 
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v - h/L (1.4.18) 

where h is the so-called I&man height 

h = K u*/f 

characteristic of the depth of the boundary layer under neutral 

stratification. An analogous development by Zilitinkevich and 

Chalikov (1968) for the transfer of heat across a turbulent boundary 

layer is given by 

he/T* = Po[ln(u*/f so) - C(U)] (1.4.20) 

where A6 is defined as the potential temperature difference between 

the surface and the level where the flow is geostrophic, PO is the 

turbulent Prandtl number (= 0.7) under near-neutral conditions and C 

is a universal function of u. Prom empirical formulations for A(u), 

B(u) and C(u), (kerman, 1974a), it is possible to construct algorithms 

for the momentum drag coefficient, u*/G hnd the 'thermal drag' 

coefficient, T,/A8, as functions of the dimensionless parameters, Ro 

and Sg, given by 

Ro * G/fzo (1.4.21) 

and 
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(1.4.22) 

Accordingly, u* and T, can be derived immediately given the ex- 

ternal! controlling variables of the problem -- G, zo, and A8. 

The combined similarity theories of Monin and Oboukhov and the 

resistance laws make it possible to estimate the turbulent statistics 

at a given height, z, in the constant flux layer, at a particular loca- 

tion and time, having estimated G, z. and A9. 

It is emphasized here that since the basic meteorological dynamics, 

as conveyed by the similarity theories, are self-consistent with the 

empirical representations (such as those given in Appendix A), it is 

pointless to introduce additional variables through ad hoc models of -- 

the spectra. That is, in models such as von K&&n's (Teinissen, 1970, 

p. 40) the scaling lengths there are not linked dynamically to 

similarity theories. In fact, it is often observed that a form other 

than the von K&&n spectral form, may be appropriate for representing 

the large scale structure of the spectrum. For these reasons, only 

spectra based on direct observations are considered In the models 

developed here. 
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2.0 FORMULATION OF THE SIMUJiATION MODEL 

In order to extend the methods of simulating turbulence to 

processes with rather general spectral and non-Gaussian characteristics, 

it is necessary to develop a suitable mathematical structure, explore 

some of its properties, and determine whether its application is 

practical. This chapter outlines a particular functional representa- 

tion for turbulence that allows for a systematic development based on a 

Gaussian process. We also consider here the method of spectral 

factorization for calculating a filter for those cases in which a linear 

sub-process can be identified. 

The concept of a functional representation (Wiener, 1958) of 

turbulence arises from a picture of a turbulent velocity field as the 

result of random impulses. The process of generating a response to a 

stimulus is equivalent to a black-box process. The triplet of input, 

black-box. and response are the characteristic elements of a mathe- 

matical identify called a system. It is the intent of this research to 

consolidate and extend present system representations which use random 

pulses to produce a response resembling turbulence. 

2.1 Functional Representation of Turbulence ~- -. -..... 

The mathematical formulation used here for analysis of a system is 

based on the original work of Volterra (1930). A functional transforma- 

tion is defined as the operation which transforms a function to a 

number -- an operation such as a definite integral. In the application 

of functional6 to systems, the black-box is modeled by the functional 
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transformation which maps the temporal function representing the evolved 

history of the input to the present (single) value of the output. If 

an input function, E(t), as evolved up to time t, Is represented as a 

point in a space of functions, then the functional transformation map8 

the input Into a point in a uew space of output functions, say, y(t). 

A8 c(t) varies with the parameter, t, then the transformation will map 

c(t) to a varying output, y(t). Volterra showed that a continuous 

functional (transformation) could be uniquely approximated by a poly- 

nomial series of functionals given by 

I 
00 

y(t) = Ic" + &t;tl) E(t,)dt, + 
-w -w -0J 

K2(t;tl,tz) E(t,) S(t,) dtl dt2 

(2.1.1) 
co 

+ 
rl r 

K3(t;tl,t2,t3) S(t,) E(t,) c(t,) 
-00 -00 -03 

dtl dt2 dt5 + . . . 

(All integrals hereafter will have a range ('QJ, 00) unless otherwise 

epecified.) The functions, K', are referred to a8 the kernel8 of the 

representation. A physically realizable situation, in which the trans- 

formation of any signal can act only on the past of an input, require8 

that 

Ki(t;tl,t2,...ti) = 0 tti ' t) (2.1.2) 
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For a horizonally homogeneous turbulent flow whose statistics are ad- 

vetted according to Taylor's hypothesis, the turbulent process is also 

temporally invariant, or stationary, so that 

Ki(t;tl,t2,...tl) = K'(t-tl,t-t2,....,t-ti) (2.1.3) 

In addition to determining the transformation of the input to the 

output functions, the kernels also determine the statistics of the 

output from those of the input. A simple, linear, temporally invariant 

system is represented by 

y(t) = 
I 

&t-r) S(r) dr (2.1.4) 

For convenience, we take the input to have zero mean (z = 0). 

Formation of statistical averages of the input and output leads to 

y(t) y(t+r) = R p= &rl) REs(~+5*2) dTl dT2 (2.1.5) 

and 

y(t) E(t-1 = R ys(r) = I &Tl) RSS(~-Tl) dTl , (2.1.6) 

In (2.1.5), the output variance, R 
YY' 

is represented as a tranaforma- 

tion of the input variance, R 
55' 

The utility of using a white-noise 

input process, defined by 

(2.1.7) 
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(6 is the Dirac delta function) is shown by substituting (2.1.7) in 

(2.1.5) and (2.1.6) to form 

Ryy(-O = I K'(r,) K'(r-rl) drl (2.1.8) 
I L 

R (r) = K’(r) 
YE 

(2.1.9) 
1 

The kernel, K1, Is therefore derivable by cross-correlating the 

input and output, and the kernels for the functional transformation 

of the white noise process share variance properties with the output. 

It is important to note that while the above technique of 

determining the kernel of a linear system is used in many fields of 

engineering, here the supposition that both the input pulse and output 

response are available for correlation is not valid. The input forcing 

mechanism, as represented by the functional transformation (2.1.1), is 

Internal to the fluid and not measurable. This makes the problem of 

determining the kernels in practice more complicated than the usual 

situation where both input and output are available simultaneously. 

The significance of (2.1.8) is better seen in a spectral 

representation. Consider a Fourier transform defined by 

f(t) = k 
I 

2(w>emiwt du (2.1.10) 

applied to (2.1.4). The result is giGen by 

hJ.o = 2(u) &) (2.1.11) 
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which for the white-noise property 

Iii” = 1 

becomes 

li12 = pj2 

(2.1.12) 

(2.1.13) 

Thus the spectrum of the kernel is equal to that of the output for a 

linear system. Equation (2.1.13) forms the basis for many of the 

applications of the linear simulation of turbulence. A major question 

remaining, then, is how to determine KL , given that its spectrum is 

that of the turbulence. A recent computational development is 

explored in Section 2.4 to determine K1 for a relatively general class 

of spectra. 

An important consideration in developing a simulation model is the 

ease of application. Parente (1970) has outlined the method of treating 

interacting systems. In most applications of turbulence models, the 

simulated turbulence is used in turn to stimulate a system representing 

a structure or perhaps another geophysical process. By the algebra 

of functional8 (Parente), the final response statistics are derivable 

from those of the turbulence without recourse to actually generating 

simulated realizations. Of course, such a consideration is basic to 

linear filtering, but it is useful to note that its application is also 

valid with non-linear simulations such as discussed in Chapter 5.0. 

As shown by Barrett (1963), the functional expansion of (2.1.1) 

can be made more efficient by an orthogonalization of the basis, or 
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input process, E(t). The question is what process to use for maximum 

efficiency. The philosophy of this study Is that in cases where the 

turbulent process may be considered nearly Gaussian, the obvious basis 

to use to expand the flow field is one based on orthogonalization 

relative to the Gaussian process -- the Hermite polynomials. Some 

questions about the conditions under which such an expression is likely 

to be successful are discussed next. 

2.2 Probabilistic Structure of Surface Turbulence -------- 

For many years (Batchelor, 1953) the one-point turbulent velocity 

probability density function (p.d.f.) was observed to be indistinguish- 

able from a Gaussian distribution. Stewart (1951) was the first to 

establish the pronounced non-Gaussian structure of turbulence with de- 

creasing scale. Further investigation8 of the moment distributions 

over scale (Frenkiel and Klebanoff, 1967) confirm the converse of 

Stewart's work -- that there is a quasi-Gaussian structure at scales 

commensurate with the energy containing sizes. 

Argument8 concerning Gaussian structure are not extendable to the 

joint p.d.f. of two velocities at neighboring points because of the non- 

linear effects (Batchelor, Chapter VIII) which led to an inertial 

transfer of energy across wavenumbers. Because non-linear interactluns 

within the turbulence Increase with decreasing scale up to the vi8cou8 

limit, a resulting increase of non-Gaussian characteristics with de- 

creasing scale is to be expected. The probability distribution of the 

dissipation rate 

Xl2 e = 15v \-& (2.2.1) 
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for isotropic turbulence (or equivalently local accelerations) is a 
:. 

convenient measure of the non-linear (and non-Gaussian) structure over 

a wide wavenumber region of engineering concern. According to Kolmogorov 

(1962), Oboukhov (1962) and Grant et al. (1962), the equilibrium struc- 

ture implied in Kolmogorov's original similarity result required a 

refinement to a more local, volume-averaged dissipation rate, < E >. 

It has been suggested (Gurvich and Yaglom, 1967) that < E > has a log- 

normal distribution. This prediction has been disputed by Tennekes and 

Wyngaard (1972) and Gibson and Masiello (1971) on the basis of experi- 

mental data taken at a very large Reynolds number. At present, the 

only workable hypotheses on the probability structure appear to be 

empirical (Tennekes and Wyngaard, 1972; Frenkiel and Kelbanoff, 1967). 

In summary, it is reasonable to attempt a simulation of the energy 

containing structure of surface layer turbulence in terms of a quasi- 

Gaussian process. The fact that the observed structure of the surface 

layer turbulent velocity field is nearly Gaussian (Appendix A), as 

expected by the preceding discussion, is encouraging for modeling 

purposes. However, from the discussions of the strongly non-linear 

spectral region, it is concluded that an expansion about a Gaussian 

process at scales much smaller than the-energy generative region is 

limited. 

2.3 Wiener-Hermite Functional Representation 

The orthogonal functional Hermite polynomials based on input 

realizations, E(t), drawn from a white, Gaussian, stationary process 

are (Barrett, 1963) 
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- E(tp) 
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(2.3.1) 

(2.3.2) 

E(t,) - Mt1-t2) (2.3.3) 

Se,) E(t,) - E(t,) 6(t2-t3) 

(2.3.4) 

6 (t3-tl) - E(t,) 6(t1-t2) 

The Wiener-Hermite (hereafter referred to W-H) representation of a 

velocity component, u(t), by a white, Gaussian, stationary procees is 

given by 

u(t) - I 1 K (t-t,) Hl(tl) dtl 

+ I I K2(t-tl,t-t2) H2(tl,t2) dtl dt2 (2.3.5) 

+ I I I K3(t-tl,t-t2,t-t3) H3(tl,t2,t3) dtl dt2 dt3 + . . . 

where both input, S(t), and output, u(t), are understood to have a mean 

of zero. An equivalent representation follows from a Fourier 

transformation (2.1.10) of (2.3.5) 

(2.3.6) 
i- . . . 
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The orthogonality conditions for the Hermite-polynomials given by 

Ho(+) Ho(t2;5) - 1 

Hl(tl;E) H2(t2;S) - 6(fl-t2) 

H2(tlst2;S) H2(t3,t4;5) = W1-t3) 6 (t,-t,) 

+ ml-t41 6(t2-t3) 

or, their Fourier transformed equivalent, 

A n 

Hl(wl) Hl(W2) - "(wlw2) 

(2.3.7) 

(2.3.8) 

(2.3.9) 

(2.3.10) 

(2.3.11) 

+ d(Wl+o4) &(w2+w3) 

considerably reduce the complexity of computing the output statistics. 

For example, by utilizing the orthogonality conditions, the expression 

for the spectral density of the u-process, $,, defined by 

h h 
u(w,) u(w,) - O,(w,) 6bJll*2) (2.3.12) 

is given by 
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(2.3.13) 

Equation (2.3.13) expresses the decomposition of the spectrum of the 

process into a sequence of posi.tive definite contributions. The 

positive definiteness of the W-H representation is a desirable feature 

of the method. Not every moment expansion scheme (Ogura, 1963; 

Deardorff, 1972b) can guarantee such a property, and in this respect 

these other methods contain basic inconsistencies. The implicit 

assumption made in using the W-H representation as a representation of 

nearly Gaussian process is that the contributions to the spectrum will 

tend to concentrate the variance in the low order terms of (2.3.13). 

Because the Hermite polynomials, and hence individual Hermite 

functional8 of the expansion (2.3.5) and (2.3.6) are orthogonal, the 

truncation 

Ki - 0 i>2 - (2.3.14) 

is consistent with the well-known result for linear white, Gaussian 

forcing 

(2.3.15) 

Successive moment expansions arising from (2.3.5) or (2.3.6) become 

progressively more complicated. For example, the skewness (or bi- 

spectrum) - truncated to second order terms is given by 
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h A h 
u(w,) u(w,> u*(ul+w2) - 4-Tr &q &2) ii2 

* 
(w,dJJ,) 

+ 2(w,) 2 
* 

“2 
((9~~~1 K (-w~AJ~+W~) 

-I- ;2(-wl,wl+w2) 2 (w,) f;l 
* 

(w1+w2) (2.3.16) 

+ + k2(w1-p,p) ~2(wl*2-P,p-Ul) f;2x 
I 

(P.W1+w2-P) 

+ j?(w2-p,p) ~2(wl+w2-p,p-w2) i2 
* 

(p,wl+w2-p)l)dp + -0. 

Equation (2.3.16) indicates several other features of the W-H 

representation. In general, a description of turbulence with an 

infinity of moments is equivalent to a description with an infinity 

of kernels. Also higher moments representing the non-Gaussian structure 

are characterized by interactions between the Ki, or equivalently among 

a hierarchy of non-linearities. It is possible, at least in principle, 

to recover one set of statistics from another by solving the (infinite) 

set of coupled integral equations. 

Some simplification is obviously needed. The truncation of the W-H 

expansion is yet another case in which the closure problem of turbulence 

must be faced. Attempts to determine the kernels dynamically (Meecham 

and Siegel, 1964) have been shown to be inappropriate (Orszag and 

Bissonnette, 1967). Attempts to produce the equivalent of a stimulation 

technique (George, 1959; Button, 1970) and correlate the input and output 

are not applicable. The method of Robinson (1967a,b) based on Wiener's 

original work as a method of determining the kernels of a linear (or 
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equivalent linear) system, by predictive decomposition is unwieldly 

and time consuming. 

For a W-H representation of a nearly Gaussian process, where the 

non-linearities are weak, it is advantageous to represent higher order 

kernels in terms of lower order kernels (Chapter 5.0). The result is 

an expansion about linearity, and the determination of the kernels 

reduces to calculating just K1. The next section outlines a method of 

solving for K1 for a generalized class of spectra which is compact 

and computationally efficient. 

2.4 Spectral Factorization 

As a demonstration of the basic features of spectral factorization, 

consider the first order linear system driven by white noise defined by 

the differential equation 

y+ T-l y(t) - S(t) (2.4.1) 

where y(t) is the response to the white noise S(t), and T characterizes 

the response time. For convenience, let us scale the problem so that 

T = 1. This equation is often employed (for example, Skelton, 1968) to 

describe aircraft response to turbulence. The solution of (2.4.1.) is 

given by 

9(t) * e-tl W-t,) dtl 
0 

(2.4.2) 
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The kernel, K1, is given by cot, for t > 0. The Fourier transform of 

(2.4.1) is 

&U-l) - ; 

or, from (2.1.11) 

i?(w) = (iWl)-1 

The spectrum follows frpm (2.4.4) as 

Ah 
4,(w) - y y* - 2 ;;l* 

- (i&1)-l (-i&1)-l 

(2.4.3) 

(2.4.4) 

(2.4.5) 

= (w2+l)'l 

The spectral factorization problem is the inverse problem. Given 

the spectrum, $y, and the fact it was derived from a white, Gaussian 

stationary process, find f;l and K1. In the above example the spectral 

factors, l+iw and I-iw, are well-known and derivable analytically in 

several ways. In fact, applications with this spectrum (often referred 

to as a Dryden spectrum) have been made simply to utilize the known 

spectral factors and simple form of the kernel (even though it is known 
-S/3 that the turbulence spectrum varies as w . Such an assumption is 

useful because the analytical determination of the factors of other 

spectra, such as von K&&n's spectrum, is prohibitive. 
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However finding ? from 49 is not a unique process, as the problem 

is stated above. There are an infinity of functions, y(t), which one 

could study, either by observation or simulation which would have the 

property 

- $9 
(2.4.6) 

which is the only defining property of i1 given. It is necessary 

therefore to distinguish ? from any j which has the same spectrum. 

As a demonstration of the defining characteristics of f;l and K1 

consider a simpler problem where the input is a single pulse, 

S(t) - 6(t) 

From (2.4.2) the output response is 

Y(t) - K'(t) (t > 0) 

(2.4.7) 

(2.4.8) 

that is, the kernel function is the response for a single pulse. (Con- 

sequently, K1 is referred to, in what follows, as a kernel or a response 

function.) The function, K'(t), of (2.4.8) is, from (2.4.2), 

1 K (t) - e -t t20 

(2.4.9) 

-0 t<O 
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so that for a pulse (s(t)) at t - 0, the response is instantaneously 

at its maximum after the impulse begins. This property is referred to 

as the minimum phase or delay characteristic, because the modeled physi- 

cal system responds with the minimum possible delay to a change in the 

input. Physically, of course, a finite delay would be required before 

the system achieved its maximum response. It is noted that the modeled 

process (2.4.1) is free from frictional effects which intuitively we 

would expect to delay the initial response. 

The spectral factorization process using the minimum delay criterion 

was also shown by Bode and Shannon (1950) to be equivalent to determining 

a function with a given modulus (spectrum) with zeroes confined to one 

half of the complex plane. The general factorization problem was 

solved by Kolmogorov and is discussed in detail by Doob (1953). 

In what follows, the development is heuristic. Also, because the 

remaining development and computations will necessarily be in discrete, 

tabulated form, the formulation is given in an equivalent, discrete 

representation. That is, f; (dropping the super-script 1 for con- 

venience) is re-defined as 

20) - T ktetit (2.4.10) 
t-o 

where k I is the kernel tabulated over the index t and the summation 

limits reflect the condition that 

ki - 0 I<0 (2.4.11) 
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The phase characteristic, H(w), of the Fourier transform of the kernel, 

is defined by 

’ ii(w) I p2(w) eww) 

Consider a Fourier transformation of the logarithm of i, given by 

In i - 
Q) 

C Lteiwt 
t-o 

00 QD 
(2.4.13) 

- Lo + C Lt co8 wt + 1 C Lt sin wt 
t-l t-l 

The one-sided nature of (2.4.13) results from the equivalence of the 

physical realizability condition on K (2.4.11) and the lack of poles 

in the lower half plane (complex) of frequency (Robinson, 1967a). The 

integration (2.4.13) is equivalent to evaluating singularities in the 

upper half plane only. The Fourier transform of In 41 l/2 is given by 

03 
In + l/2 - a0 + 2 C at co8 wt 

t-l 
(2.4.14) 

where the symmetric nature of the spectrum alters the range of summa- 

tion. Accordingly, the coefficients, a, are derived from the inverse 

transform of In Q 112 , 

IT 

at 
1 

xi? I 
COB wt In $1'2(w) dw (2.4.15) 

-IT 

From (2.4.15), by forming logarithms of both sides, we have 
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A w W 

log K(w) - L 
0 

+ C Lt COB tit + I C Lt sin tit 
t-l t-l 

- a0 + 2 i at co8 wt + 10(w) 
t-l 

By equating coefficients in COB wt and sin wt we are led to 

Lo - ao 

(2.4.16) 

(2.4.17) 

Lt = 2a t for t > 0 (2.4.18) 

The phase O(w) in (2.4.12) essentially selects a function i with no 

singularities in the lower half plane. The particular phase relation- 

ship is given by 

W 

O(w) - C Lt sin wt 
t-l 

W 
(2.4.19) 

- 2 C at sin wt 
t-l 

Equation (2.4.19) is the essential result of this section. The 

analytical problem of spectral factorization is now complete because 

the phase characteristic that distinguishes the kernel from an9 other 

function with spectrum $ can be computed in terms of the spectrum itself. 

This result is clear if we substitute (2.4.15) into (2.4.19) to produce 

T 

O(w) - 2 

W 

C sin wt 
IT t=l I 

co8 wit In 9 1'2 (w,) dwl (2.4.20) 

0 
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The class of spectra to which such an operation will apply depends on 

whether the spectrum obeys the Paley-Wiener condition 

I w ln4(W) &>-a 
- (ltU2) 

(2.4.21) 

This constraint is discussed in Appendix B as it relates to numerical 

approximations. 

Eatzenelson and Gould (1962, 1965) have described a method of ex- 

tending the spectral factorization method to the evaluation of non-linear 

kernels of a functional representation. Their method involves the 

successive minimization of error between a sampled realization and the 

output from an n th order representation in order to determine the 

optimum n+l kernel. Several hypotheses implicit in their approach are 

not valid in the problem here. First, the assumption that there is a 

freedom to generate an output realization of turbulence at will, is 

not appropriate. Second, the higher order spectra (bispectra, . ...) 

which are needed in Eatzenelson and Gould's method are not yet available 

except in very tentative form (Elderkin et al., 1972). Also there is no 

guarantee that these higher order spectra will obey the factorable 

properties required by the technique. 

We now move to the implementation of the mathematical development. 



32 

3.0 LINEAR EEPEESENTATION OF UNI-COMPONENT TURBULENCE 

In this chapter, linear models of a single component of turbulence 

that are consistent with surface layer similarity are considered and 

extended to generalized spectral forms using spectral factorization. 

Because the response functions or kernels are a relatively novel con- 

cept in describing the structure of atmospheric turbulence, it is 

interesting to study their form under varying meteorological conditions. 

Properties derived from the response function, including measures of the 

predictability and memory of the model turbulence also are examined. 

The discussion of this chapter will be limited to the vertical velocity 

component, partly for convenience and partly because of its importance 

in aeronautical response problems. 

3.1 Model of the Vertical Velocity 

The importance of the vertical velocity spectra, both in modeling 

the response of aircraft to turbulence and in studying the vertical 

flux of momentum and heat near the earth's surface, is indicated by 

the availability of empirical estimates of its spectral form. Busch 

and Panofsky (1968) have approximated the w spectra (normalized by ue2) 

by a form 

(3.1.1) 

based on data drawn from several sites (f is defined in (1.4.9)). They 

note that at low wave numbers, f < 1, their empirical form is an 

improvement over that suggested by Pasquill and Butler (1964), 



f Gw(f) - w 
(l:Bf f)5'3 

W 

(3.1.2) 

Confirmation of the Busch-Panofsky form is supplied by Kaimal et al. 
.r 

(1572) based on the Kansas data. however, 'the estimates for (Aw,Bw), 

for neutral stability, vary between.the estimates of Kaimal~ (1.O;l.S) 

and Bus&and Panofsky (1.5,2.7). The variation in these coefficients 

is indicative of the accuracy that can be expected inestimating 

characteristics associated with.spectra, such as variance, length 

scale, dissipation, and response functions. All empirical spectra 

behave asymptotically as f -S/3 , which is characteristic of the 

Kolmogorov region (1 << f << fKoL). 

Another spectral form (Appendix A) 

Aw % 
213 f2/3 

f Gw(f) - 
l+(Bw f)4'3 

(3.1.3) 

is convenient mathematically but does not have the usual front slope 

of +l found by observations. The convenience of (3.1.3) lies in its 

form after a transformation of variables 

f' _ f2'3 (3.1.4) 

From the invariance of energy with a change of variables 

f Gw - f' G; (3.1.5) 

we are-led to 
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f' G' - f' 
l+(B; f')2 

(3.1.6) 

which is a form familiar in filtering problems (Section 2.4) and which 

has a well-defined kernel for a linear response to white noise given by 

1 K (x') - exp - xt/B ' x' > 0 
W 

(3.1.7) 
-0 x’ < 0 

Because (3.1.4) is related to a transformation of the space variables 

xt a ,213 (3.1.8) 

the general form of the response function will be 

Kl(x) - Yw l/2 exp -(x/B~)~'~ h(x/Bw) (3.1.9) 

where the function H carries the effect of the linear Fourier trans- 

formation involved in factoring (3.1.6) to obtain (3.1.9). The 

coefficient yw can be shown to be 

Yw - Aw % 
213 B -213 

w 

(3.1.10) 

The response function of any empirical formulation for w spectra, 

to the extent that it approximates (3.1.3), can be expected to vary 
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Figure 3.1. Comparison of response function (r = 1 and r = 2/3) 
for neutral stability. 
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according to (3.1.9). Therefore it is useful to examine the basic 

structure of response functions in (3.1.9) for Ii * 1. 
,. I 

3.1.1 Analytical Characteristics of Response Structure. The 

form of the approximate analytical kernel is shown in Figure 3.1, 

both as a function of scale distance and of stability, where the 

parameter 5 is defined in (1.4.6). The variation of y 
W 

1'2(c) and 

Bw(5) is based on the empirical relationships of Appendix A and is 

given in Figure 3.2. The general feature of the solution for K1 is a 

monotonic decrease of the response with distance (in the direction 

from which the turbulence is advected). For a given longitudinal 

separation x, as the height (and scale length, !&) increase, ii. - x/8 

decreases. From Figure 3.1, a decrease in ii is equivalent to an in- 

creased response. The kernel for separations less than a(% < 1) 

decrease faster than exp(- %) but decreases less rapidly than the 

response of a simple linear oscillation system for j; > 1. That is, 
--2/3 the approximate analytical solution, exp(-x ), indicates a decrease 

in the response for small lags (relative to !&/I+), or equivalently, 

indicates that the filter will give less weight to the more immediate 

past. On the other hand, the response for large lags will be greater 

than that for the common first order linear model. 

The effects of stratification on the kernel, also given in 

Figure 3.1, are two-fold. First, the initial response (% = 0) varies 

with stability, and is a minimum in neutral conditions. Second, the 

rate of decay of response decreases with decreasing stability. The 

minimum initial response is a reflection of the minimum in w at 

5 - 0 (Figure A.3). The rate of decrease of K1 is determined by Bw. 



Figure 3.2. Variation with thermal stability of parameters of 
analytical approximation to linear response function. 
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For increasing instability (Figure 3.2), Bw increases as more energy 

is introduced at larger f (Lumley and Panofsky, Chapter 5). Therefore, 

from (3.1.9), the response at a given 2 increases. 

Another concept which can be demonstrated for the simple 

analytical approximation is the memory of the system. Intuitively, 

memory may be considered as the integrated effect of past stimuli. For 

convenience, it is desirable to compare the memory of the process 

representing turbulence with that of a simple linear first order 

process with the same variance. Memory is defined tentatively as 

Mem = 1 K'(y) dy) / (K'(O) exp(- y)dy) 
0 0 

I- K’(Y) dy 

(3.1.12) 

It is noted that this definition is only useful if K1(0) # 0. For the 

kernel (3.1.9), Mem = 1.33, which indicates a net increase in memory 

of about 0.33 relative to a simple first order process. For a 

slightly different version of the memory concept, given by 

Mem(ii) - - &Y) dy (3.1.13) 

the memory as a function of distance or time from a stimulus is itself 

a function of scale. From Figure 3.1, Mem(j;) < 1, for 2 > 1. Therefore 

the increased total memory which is greater than unity (Mem(-) * 1.33), 

results from the large scale structure of K1. 



39 

1.5 

1.0 

2z 
-u 

0.5 

ox: 

X KAIMAL et al 

0 BUSCH - PANOFSKY 

. BUSCH -PANOFSkY-KAIMAL 
’ (VARIANCE COMPATIBLE) 

- MODEL (APPftNDiX A) 

tr=w 

Figure 3..3. Response functions for various empirical spectra. 
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This completes the discussion of the general properties of the . . 

approximate analytical structure of K1. It remains to contrast this 

intuitive and preliminary discussion later with more exact numerical : 

solutions for a variety of empirical spectra. 

3.1.2 Kernels for Different Empirical Spectra. The spectral 

factorization procedure was applied numerically to some of the 

empirical spectral representations of Busch and Panofsky, Kaimal 

et al., and Pasquiil and Butler as well as the spectrum discussed in 

Appendix A and Section 3.1.1. The objective was to determine the 

range of response estimates which could be expected from variations 

in empirical representations of the w spectra. This variability 

provides a realistic estimate of accuracy against which to contrast 

other sources of variability, such'as arise in the parameterization of 

the thermal stability. 

The kernel K1 obtained by factorization of some of the empirical 

spectra are given in Figure 3.3. Also shown are the results for K1 

arising from the common spectral form used by Busch and Panofsky and 

Kaimal et al., but with Aw and Bw altered for compatability with the 

variance and Kolmogorov range structure (Appendix A). The final kernel 

plotted in Figure 3.3, and termed "model", corresponds to the spectral 

form f-1'3(1+B 
W 

f)4'3)-1, with coefficients chosen for compatability 

with the variance and inertial range structure. 

The response function, as expected, is monotonic and similar to 

the basic exp(- x -Z/3) f orm of Section 3.1.1. It is noted that estimates 

of K1 using the Busch-Panofsky formulation differ significantly with 

increasing scale from either of the formulations based on the Kansas 
-. 
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Figure 3.4. Comparison of various empirical spectra. z 
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data. The response based on the Kansas data for j; > 1 is not as large 

as the kernel derived from the Busch-Panofsky data. The variance 

compatible spectrum, based on the common mathematical form used by 

both Kaimal et al. and Busch and Panofsky, results in a response 

structure markedly different from the Busch-Panofsky form alone. It 

is concluded that the normalized variance characteristics of the data 

set drawn from the Kansas experiment and that used by Busch and 

Panofsky differ significantly. 

The underlying reasons for this disparity are not clear, but may 

be attributed to some degree to the larger roughness characteristic 

of the Busch-Panofsky data set , or perhaps a difference in similarity 

involving the average structure of the large scale flows (Kerman, 
. 

1974b). Whatever the cause of the disparity in the form of K’, the 

results indicate that a significant difference exists in the response 

representation at scales, i > 1, resulting from various experiments. 

From Figure 3.1, the estimated errors between the functional forms 

are about equivalent to an error of + 0.25 in an estimate of <. The 

numerical estimate of the kernel corresponding to the model spectrum 

underestimates the small scale response and overestimates the large 

scale response. An examination of the different spectra factored to 

produce the response estimates (Figure 3.4) reveals the close rela- 

tionship that exists between the relative distributions of variance 

of the spectra and the relative response structures. For spectra 

with additional variance at scales, f < 1, (for example, the analytical 

model spectrum) the result is an increased response at scales, j; > 1, 

and vice versa. 
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The objective of this section was to compare and contrast filters 

arising from various empirical spectra. In summary, it is concluded 

that perceptible differences in the response structure occur according 

to the empirical representation of the spectra. These differences in 

turn are related to the relative spectral content between empirical 

formulation both for the large and small scale regions. 

The response structure is next studied as a function of stratifi- 

cation. 

3.1.3 Stratification Effects on Kernels. As discussed in 

Section 3.1.1, the function, k, could be described by two of its 

characteristics -- its initial response at ii - 0, and its integral, or 

memory. The function KL(0) and its memory is displayed in Figure 3.5 

as a function of 5, for the particular model described in Appendix A. 

The calculations in the spectral factorization are performed with 128 

points in the Fast Fourier Transform (FFT) algorithm. The response 

at % = 0 differs from that of Figure 3.2 because of the approximations 

made near f max (Appendix B). 

In Figure 3.5, the initial response increases with IS] and the 

a&mry increases monotonically with increasing instability. The 

response function implied in Figure 3.5 is equivalent to that shown 

in Figure 3.1. The response for a given j; > 0 is less for stable 

stratification than for unstable stratification and a minimum for 

neutral stability. The structure of the response function, normalized 

by its initial value, also follows from qualitative consideration of 

the change in the spectra with stratification. While the variance, 
3 w (which in (3.1.12) determines the initial response) increases in 
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Figure 3.5. Initial response and memory for model spectrum. 
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both stratifications, the spectral bandwidth, Bw, (which determines 

the decay rate of response) increases monotonically with decreasing 

stability. Accordingly, the excitement of more large-scale energy 

resuws in an increased response at scales 2 > 1. 

It follows from the scaling of the spectra that the response 

for an arbitrary stability, scaled by' its initial response, is only a 

function of %/Bw. For a constant flux layer in which the Monin- 

Oboukhov length, L, is also constant with height, one may equate 

changes in S(- z/L) with changes in height. Therefore, for a given 

x, %/Bw will decrease with height, both because %(- x/a) decreases 

with height and,because -1 Bw decreaies with height (Figure 3.2). 

Therefore, the response will increase as a result of an increase in 
3, w with height and a decrease in %/Bw with height. Under unstable 

conditions, Bw increases approximately linearly with height, as does 

y 112 
w ' so that from (3.1.9), for a given x, 

K1(z) - z exp(- z -4/3) (3.1.16) 

l/2 Under stable conditions, Bw is approximately constant, while yw 

again varies linearly with height, so that for's given x, 

K1(z> - z exp(- z -2/3) (3.1.17) 

For neutral conditions, both yw l/2 and Bw are constants in height, 

and the response function has a form 

(3.1.18) 
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For.large enough z, aseuming Kz/fi is still neariy unity, the response, 

for's given x, will vary linearly with height in stratified cases and 

approach a constant in neutral cases. 

It is concluded that the response structure varies appreciably in 

various stratifications. The results for the initial response and 

memory, as a function of 5, are intuitively consistent with qualitative 

discussions of the spectrum. It is now useful to consider another 

effect on the simulated turbulent process*-- that of viscosity for low 

Reynolds number. 

3.1.4 Viscosity Effects on Kernels. The empirical spectra dis- 

cussed in the previous sections, were obtained in flows whose Reynolds 

number was sufficiently large that the viscous range was well removed 

from the energy-containing eddies. Accordingly, the models discussed 

there should probably be called 'inertial' but we will refer to them as 

inviscid for mnemonic and comparative purposes. It is useful to 

consider modifications of the Reynolds number (Re) criterion in order 

to study the response structure in the presence of viscosity. This 

problem is not germane to the usual application of filters which 

simulate the energy containing scales. Rather it is preparatory for 

later attempts (Chapter 5.0) to simulate the derivative structure of 

the small scale region (f W fKoL). 

The response functions may be considered as the velocity field 

that would be produced by a single impulse (Section 2.4)). For 

inviscid flows, the response to the stimulus is immediate, giving a 

discontinuity at the time of the impulse. In a viscous flow, the 

formation of such infinite curvatures is impossible, requiring that 

response functions rise smoothtil to a maximum value. 
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The viscous adjustment to the'three dimensional Kolmogorov 
: i 

spectrum of the inertial subrange is illustrated by the model spectrum 

(Pao, 1965) 

E(k) i ae2'3 k-5'3 exp [- ~~~(kn-~)~'~] 
I 

(3.1.19) 

where TI -1 is the Kolmogorov wave number, (e v 
-3 l/4 ) . The corresponding 

one-dimensional spectrum for the isotropic region (Batchelor, 1953, 

p. 50) is 

933(kl) - aw 2/3 
kl 

-5'3 ;(i,, (3.1.20) 

where 

J,(;I) - E I 1 
(1+52)c2'3 expi- $&l/S)4’31dE 

0 

;1 1 -krl 

In (3.1.20) 

%-$$a 

(3.1.21) 

(3.1.22) 

(3.1.23) 

where a is the three-dimensional Kolmogorov constant (- 1.5)). A model 

of'the spectrum over the entire scale range from energy-containing to 

dissipative is therefore given by 
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A 4 2/3 f2/3 

f Gw(f) - w E 1 + cBw fj4/3 Jw (f'fKOL) 

where (Appendix A) 

f KOL - c4 Re3'4 

(3.1.24) 

(3.1.25) 

For a given 5, and fixed 4,. the effective cut-off wave number, fKoL, 

of (3.1.24) varies as Re 3/4 . 

The method of digital spectral factorization was applied to 

(3.1.24) for 5 = 0, and several ranges of Re. The response for a given 

value of Re rises from an initial zero value, overshoots the inviscid 

case, reaches a maximum, K1 max' at a distance % max from the origin, 

and then settles down to the inviscid solution. The variation of KLmx 

and 2 max are given in Figure 3.6 as a function of the Reynolds number. 

Interpreting the figure, we can see that for a decrease in viscosity, 

the maximum response increases and the displacement of the location of 

the maximum response from the origin is reduced. For Re * 10 3 , the 

resulting form of K1 closely resembles the inviscid result, and the 

maximum response of this viscid case and initial response of the 

inviscid case are approximately equal. The location of the maximum 

response for Re - lo3 occurs within a distance, l/100, from the origin, 

or impulse point. 

However, for low Reynolds numbers, say, Re (102, the effective 

loss of variance due to the viscous spectral cut-off (by Jw) is not 

reflected in the coefficients Aw and Bw. Accordingly the computations 
. 

displayed in Figure 3.6 for KAmx are underestimates for the lower 

Reynolds number range. 
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Another feature of the viscous response structure (not shown here) 

is the convergence of each kernel, irrespective of Re, to the 

corresponding inviscid kernel, for sufficiently large k. The con- 

vergence occurs at progressively smaller j; with increasing values of Re. 

This result is in keeping with the intuitive notion that a decreased 

viscosity is felt at progressively smaller scales where large gradients 

are possible. Equivalently, as the range of unaffected scales extends 

to larger f, the response over a wider scale range becomes indistin- 

guishable from the inviscid result. 

The concept of memory (3.1.14) does not apply for a viscous model 

because K’iO) = 0. Therefore, it is necessary to consider another 
$12 

ad hoc normalization, w , rather than the equivalent response of the 

common first order linear model. The memory is redefined as 

I 

cu 

Mem = K1(x) dx / { [K1(x)12 dx}1'2 

0 0 
(3.1.26) 

Estimates of memory by (3.1.26) are given also in Figure 3.6. Varia- 

tion of Re from lo1 to lo3 results in a 20 percent decrease in the 

memory. This result is compatible with the intuitive concept of 

decreased memory with increased turbulent scrambling as the viscosity 

is reduced. Another aspect of the memory structure of the simulated 

process is its predictability based on its past history. This aspect 

is examined next. 

3.1.5 Predictive Structure of the Model. In the development of 

control systems it is advantageous to be able to predict the turbulent 

velocity field at some future time, on the basis of past observations. 

In order to be able to apply some properties of linear stochastic 
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processes to the linear, Gaussian model of the vertical velocity 

component, it is necessary to examine another property of response 

functions (Section 2.1). An inverse linear functional, K -l, is 

defined by 

I K(tl) K-l (T-tl) dtl - s(t) (3.1.27) 

A Fourier transformation of (3.35) produces an equivalent definition 

ii(u) S(w) - 1 (3.1.28) 

Accordingly, the inverse linear functional is derivable from the kernel, 

K, by the method implied in (3.1.27) or (3.1.28). For a perfect system, 

without noise, the inverse functional generates a white, Gaussian 

process, 5, from a shaped spectral process, w, in the manner 

S(t) - I K-l(T) w(t-T) dT (3.1.29) 

Let us consider a prediction of w in terms of its filtered past. The 

filter is determined so as to minimize the least squares error between 

the prediction and verification (Robinson, 1967b). The linearly 

predicted value, wp(t+a), at a time a in the future is given by 

wp(tW = I M(r;a) w(t--c) dr (3.1.30) 

For a linear W-H representation of w (Robinson, 1967b), the prediction 

kernel, M, is given in terms of K and K-l by the expression 
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Figure 3.7. Comparison of response and inverse response functions. 



M(r;a) = K(P*) +b-p) dp 
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(3.1.31) 

From (3.1.27) or (3.1.28), equation (3.1.31) can be considered as a 

relationship between M and K. 
-1 The Inverse filter K computed from the kernel of the spectral 

model of Appendix A, under neutral, inviscid conditions, is given in 

Figure 3.7. The physical effect of K-l is to filter a correlated time 

series to produce a white noise process. In Figure 3.7, this decoupling 

of the time series is accomplished by the alternate oscillating weights 

near 2 = 0 in what amounts to a shredding action. A measure of the 
, 

effect of an inverse filter therefore lies in the difference K -l(o) - 

K-l(A%), where Aii is the resolution for the white noise process which 

will be generated. The larger the difference, the more the necessary 

shredding action to destroy the turbulent correlations. Accordingly, 

for situations with different spectral bandwidth in different thermal 
-1 stabilities the oscillations in K near ii. = 0 will increased for de- 

creased stability. 

The results for the prediction kernel, M, are given in Figure 3.8 

for several values of aAiL The most distinctive feature of the 

structure of M is the very rapid decrease in predictive weighting for 

even j; < 0.25. The implication is that the best estimate (in the least 

squares sense) of w at a distance aA% ahead is given effectively as a 

multiple of its present value. The error of a prediction aA% units 

ahead is given by 
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Figure 3.8. Prediction function for several prediction distances. 
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X2 (aA%) -2 - Iii{% + aA%) - ;jp<% + aAxI 

-I- 
I 

zz M(rAji, aA%) w ((air) A%) d(rAji) 
(3.1.32) 

Intuitively, the rate of growth of error C2, with distance into the 

future, is a measure of the predictability of the turbulent process 

simulated by the linear representation. 

The error of prediction of the model of Appendix A is given in 

Figure 3.9. The deterioration of the prediction at even short distances 

is apparent. For example, at aAj; = 0.5, X2(0.5) = 0.6, or C = 0.8. 

That is, at a distance of about R/2, the root mean square error in 
7112 

estimating the vertical velocity will be about 80 percent of w . 

For comparison, a test was conducted of the co-n first order linear 

process, with comparable bandwidth. The results are shown also in 

Figure 3.9. A comparison of the mean square error X2 of the turbulent 

spectral model (f -S/3 ) and the common first order model (fm2) indicates 

a modest improvement in predictability at scales comparable to R. It 

is concluded on the basis of this comparison that modeled turbulence 

is,the more predictable process. This result is also in agreement with 

the discussions in Section 3.1.1 of the memory of the simulated 

turbulence. 

The basis of the previous discussions is the response function Kl 

because from it can be derived the memory and predictability char- 

acteristics. An empirical formulation for K1 is next summarized for 

convenience. 

3.1.6 Empirical Formulae for Simulation Model. In Section 3.1.1, -- 

the filter for simulation purposes was represented in the form 
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Figure 3.9. Comparison of mean square error of prediction for the 
model and Dryden form of spectrum. 
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K%) - Yw 1'2 exp-(%/Bw) 213 HG) (3.1.34) 

For the purpose of application of the model, it is convenient to sum- 

marize the forms yw, Bw and H. 
. 

The factor II(%) was computed from numerical results for K? for 

various stabilities, 5, using the following empirical formulae for 'yi 

and Bw 

y 1'2 - 0.75 (1 + 0.75jrj) 
W 

(3.1.35) 

BW 
- 0.7 (1 + 0.7.5 r + 3.0 r2) (3.1.36) 

over the range - 1.5 c 5 < 0.5. The results from H(G) for the 

extremes of the stability range, are shown in Figure 3.10* Apparently, 

H is only a weak function of the bandwidth, Bw, of the spectrum used. 

Accordingly, stability effects are ignored in approximately H. The 

form chosen to represent H empirically is given by 

H(s) - 0.5 (1 + exp[- 2.5 x "2/3,) (3.1.37) 

The specification (3.1.34) of the first order kernel of the linear, 

Gaussian vertical velocity model is now complete. The application of 

these formulae requires establishing estimates of u* and T, for a given 

height, roughness and geostrophic wind speed to denormalize the tabu- 

lated functions. An example using the resistance law formulations 

is given by Kerman (1974a). 
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Figure 3.10. Correction to analytical approximation of response 
function to mod&l spectrum. 
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3.2 Model of the Vertical Velocity Derivative 

In some applications, such as the simulation of the diffusion of 

passive airborne contaminants or the testing of instrument systems to 

measure turbulence, it may be advantageous to have a simulation of the 

derivative of a velocity component. However, the derivative process 

has several distinctive properties which make simulation more difficult. 

First, the maximum spectral content of the derivative of a turbulent 

velocity component lies in the fine scale, viscous sub-range. Second, 

from observations, (for example, Tennekes and Wyngaard, 1972), it 

is known that the actual turbulent process of the derivative is dis- 

tinctly non-Gaussian. In this kction the properties of a Gaussian 

derivative process are studied. A somewhat mOre realistic non-Gaussian 

model is presented in Chapter 5.0. 

Let the derivative of a linear process, w, be represented in terms 

of a white, Gaussian process, 5, by 

I t 1 D (t-T) E(T) dT 
0 

(3.2.1) 

A relationship exists between this representation (3.2.1) and the 

representation of the velocity, given by 

w(t) - I 
Q K (t-T) C(T) dT 
0 

which, by application of Leibnitz's rule, can be shown to be 

D’(t) - & K’(t) 

(3.2.2) 

(3.2.3) 
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Figure 3.11. Comparison of response of vertical velocity and its 
derivative. 
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for K1(0) - 0. Therefore, it is equivalent to compute D1 directly by 

the spectral factorization arising from the representation (3.2.1) or 

by differentiation in (3.2.3). From the discussion for the spectrum 

near the viscous sub-range (Section 3.1.4) the spectrum for the 

derivative, is given by 

Gaw/at (f) - f2 gw(f) - aw$E2!3 f1'3 Jw(f/fKOL) (3.2.4) 

There is no need to include the parameterization of the low wave number 

range in the spectrum of aw/at because the spectral contributions to 

the derivative are neglible near 'f - 1. However, the effect of stability 

is retained in $E and the viscous effects are parameterized in fKoL, 

for a given stability. 

The response function for aw/at for neutral stability and Re - 10, 

is given in Figure 3.11 as well as the corresponding kernel for the w 

process. The maximum response, Dlmx, in the derivative process occurs 

at the location of the maximum positive derivative in K1. The cor- 

respondence of D1 and K1 through (3.2.3) is shown clearly. The 

extensive region of negative response in D1 corresponds to the 

monotonically decreasing form of K1 over the same range. The resulting 

estimate of the memory (3.1.26) of the derivative process is signifi- 

cantly smaller than the memory of the velocity process. This is 

supported by observations that realizations of the derivative of a 

stochastic process, are more disorganized than the velocity field. 

In Figure 3.12, the maximum response of the derivative process in- 

creases with increasing Reynolds number. The location, jimax, of the 
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Figure 3.12. Magnitude and location of maximum response of 
derivative of vertical velocity and memory of 
process. 
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maximum response converges to the origin in the same manner as K1,, 

approaches the inviscid limit for large Re in the velocity process. 

However the negative response also increases in width and magnitude 

with increasing Re so that the memory continues to decrease. Therefore, 

different time or space series of a realization of k/at would display 

increasing disorder with increasing Re. Qualitatively, however, such 

realizations would not display the patchy nature often observed in real 

turbulent realizations (Stewart, 1969). An actual turbulent derivative 

signal would include more large negative excursions (rapid decelera- 

tions) than large positive excursions and have more large excursions of 

any sign than a purely linear Gaussian process. An analysis of these 

features is given in Chapter 5.0. 
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4.0 LINEAR REPRESENTATION OF MULTI-COMPONENT TURBULENCE 

The development of the previous chapter assumed that a velocity 

or derivative component was uncorrelated with any other component. But 

requirements exist, or may be foreseen for simulating the longitudinal 

velocity, u, the vertical velocity, w, and the buoyancy, 0, components 

of a turbulent flow near the ground. For example, the requirement for 

a multi-component model of turbulence for VSTOL response problems has 

been outlined by several authors (Case, 1968; Skelton, 1968; Houboult, 

1973). 

The method which is used to calculate multi-component filters 

involves the reduction of the spectral matrix to an equivalent series 

of single component spectra, with subsequent spectral factorization. 

The reduction process is discussed next. 

4.1 Model Development 

Consider a multi-component, linear representation in terms of a 

white, Gaussian process for 

components and buoyancy, in 

ci,(ii) - 
I 

Ki, (%'I 

the longitudinal and vertical velocity 

the direction of the mean wind speed 

t+?) dji' (4.1.1) 

For later consistency, it is convenient to define a velocity, ub, from 

the buoyancy fluctuation 

(4.1.2) 
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so that c, is understood to be the array (ii, g, 4). The kernel Ki, 

represents the response of the lth output velocity component to the 

j 
th white, Gaussian input component. It is not necessary to Include 

the lateral velocity component, v, because it Is uncorrelated with all 

other vailables and can be simulated independently. 

A Fourier transformation of (4.1.11, results in the expression 

h 

Qf) - ii, (f) E,(f) (4.1.3) 

and the spectral matrix is given by 

(4.1.4) 

A 

Because the process, $,, is Hermitian (f; kl * Kji *), there exists an 

equivalent diagonal procees such that 

4 t$4+ - 0 (4.1.5) 

where n is diagonal. 4 is the eigenvector metrix of @. (The symbol t 

represents the adjoint, or transposed complex conjugate of a matrix.) 

Because the diagonalization procedure is a linear operation, equation 

(4.1.5) applies at each scale independently. The diagonal elements of 

n(w) represent an uncorrelated process equivalent to a single-component 

spectrum. Therefore, we consider next the,spectral factorization of 
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each eigenspectrum (or diagonal element of 0). The result of the 

operation on uncorrelated diagonal elements is itself a diagonal matrix 

(of spectral factors), say, A,.where 

cl-xx t 

From (4.1.4) and (4.1.5) 

n= (4 f) (4 I;)’ 

(4.1.6) 

(4.1.7) 

so that 

h 

Ay=OK (4.1.8) 

where y is an arbitrary unitary matrix. After essentially a trial and 

error analysis, it was found that the equivalence 

Y-4 (4.1.9) 

preserved the minimum phase characteristics of f;. Consequently, from 

(4.1.8) and (4.1.9) 

x-&4 t (4.1.10) 

or, the eigenvectors, 4, dlagonalize both f#~ and ;. 

This completes the mathematical development of the multi-component 

model. In summary, the procedure is first to reduce a matrix of spectra 
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Figure 4.1. Spectra, co-spectrum and eigen-spectra of two 
component model. 
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on the other hand, underestimates the w spectrum in the large scale 

region but converges to the u spectrum in the inertial sub-range. 

The response functions corresponding to the eigenspectrum (termed 

eigenresponse for convenience) are similar in form to the single 

component model. The multi-component functions derived from the eigen- 

response functions by rotation using the eigenvectors (4.1.10) are 

displayed In Figure 4.2 The response, Klll, of u to the first Gaussian 

input is similar to the first order response function, K1 
11’ 

The kernel 

K1 11 has a larger response at small scales (f > 0.5) than a single 

component model, but a smaller response at larger scales (j; > 0.5). 

The effect of a downward momentum flux on the vertical component is 

to decrease the response for all scales. 1 The response K l3 (= 
1 

K 31) 

is negligible for small scales and becomes approximately constant 

for 2 > 0.5 Although both the self-responses, Kill and K133, are 

reduced by the presence of the stress, the total response for 

simultaneous, equal and opposite impulses in the input channels will 

be larger than if the u and w components were uncorrelated. 

The predictability of the multi-component model was also studied. 

The mean-square error for the single components and the mean square 

error of w for a multi-component simulation are plotted in Figure 4.3 

The errors of prediction are significantly different between the u and 

w components in single component models. The w component is inherently 

less predictable and the imposition of a cross-correlation makes only 

a minor change to I',. Equivalently, the prediction functions 
*ij 

are only slightly different than the single component estimates. 

It is concluded that the response for 2 2 0.1 for a multi-component 

mode in neutral stratification may be increased by the presence of a 
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Figure 4.3. Comparison of mean square error of prediction 
between single and two component model. 
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downward momentum flux. However, predictions based on u and w simul- 

taneously show only marginal improvement over single component models. 

4.2.2 Model in Non-Neutral Strati-f&cation. The basic u-w model of 

Section 4.2.1 was enlarged to include u-8 and w-8 correlations. Co- 

spectra involving the lateral, v, component were neglected but the v 

spectrum was included. The structure of characteristics of the response, 

memory, and predictability for a multi-component model under various 

stratifications, c, are discussed next. 

The distribution of initial response (f = 0) of the eigen-response 

functions for various stabilitfes.-(Figure 4.4) is similar to the single 

component response functions. The-ranking and indexing of hi is by _..."'-- 

magnitude. The minimum response of the eigenstructure is the same as 

for the single component w model in neutral stratification. Whereas 

the initial responses of the first and second orders are identical, 

their memories (Figure 4.5) differ. Accordingly, the order 1 and 2 

elgenfunctions represent two distinct processes but with the same 

initial response. The eigenmemories increase generally with increasing 

instability -- a property shared by single component models. 

The transformation from the eigen-response to the multi-component 

response structure by the use of the eigenvectors results in the same 

qualitative picture as outlined .for the.eigen- and single-component 

structure. As before, initial responses are greater in non-neutral 

stratification with all variables, and the memories increasing with 

increasing instability. The initial response structure of the v 

component is identical to that of the w component because of their 

identical inertial sub-range structure. 



73 

9 -I n 
‘I. V. 

r 

Figure 4.4. Initial eigen-response for four compontint model as 
a function of thermal stability. 
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Figure 4.5. Eigen-memories for four component model as a 
function of thermal Stability. 
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Figure 4.6. Extreme of response of stress and heat fluxes as a 
function of thermal stability. 



76 

I I 

I. 2. 
oL4# 

Figure 4.7. Mean square error of prediction of vertical 
vklocity for VariOuS stabilities. 
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The cross-response K1 
ij(’ ' j) ' s a measure of the coupling between 

the components, u i and u 
.I 

. The major cross-response functions each 

have zero initial response, similar to the result of the previous 

sectiod. Another feature of the absolute value of the cross-response 

functions is a maximum value obtained at a scale comparable to j; - 1. . . . . . 
1 . . ' 

These extreme'values for K-13, K1 ..l 
. . -. 

1e and K 38 are plotted in Figure 4.6 

as. a function of stability. 'The response function, K13 represents the 

response of u1 to E,, or, of u3 to cl,, and therefore the coupling be- 

ttieen u and w. From Figure.4.6, the coupling between u and w decrease8 

with increasing instability. This result is in accordance with the 

results of Wyngaard et al. (1971b) who deduced that the approach to 

free convection implies a loss of preferred longitudinal, or x, direction. 

Their argument was based on the negligible value of c for 5 > 1. On 

the other hand, the absolute maximum values of the response functions, 

K1 16 and K1 30' as seen in Figure 4.6, increase away from neutral 

stability. This represents an increase in coupling in stratified flows, 

initially between w and the buoyancy,-and subsequently between u and 8. 

The effect of thermal stratification on the predictability of the 

multi-component flow was also studied; ,I'he mean square error of the w 

component as a function of the prediction distance aA% and several values 

of stability is shown in Figure 4.7. The predictability of w in neutral 

cases was discussed in the previous section. The predictability of w 

Increases with thermal instability and decreases with stable conditions. 

It is concluded that the predictability is increased or decreased by 

the increase or decrease of low frequency content of the flow under 

various stabilities. 
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This Complete8 our di8CUSSiOU of linear, GaUSSian models and we 

now mve to a diSCUSSion of Several non-linear and non-GaUSSian models. 

! r 
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5.0 NON-LINEAR REPRESENTATION OF TURBULENCE 

ObSerVatiOnS of turbulence in the atmospheric boundary layer, as 

reviewed in Section 2.2 and Appendix A, have established that the 

velocity structure of the energy containing region of the spectrum is 

nearly Gaussian. This fact is exploited in this chapter to build a 

weakly non-linear model to simulate the low order moments and spectrum 

of surface layer turbulence. The development in terms of W-H functional8 

allows for systematically incorporating some characteristics of tur- 

bulence, such as it8 so-called patchiness. Previous simulation8 of 

the non-GaUSSian structure have relied on ad hoc methods (Dutton, 1970; -- 

Reeves, 1969). 

The extension of filtering methods to non-linear models is not 

without its difficulties, particularly with respect to the implications 

about the dynamic8 of turbulence. Models of turbulence in the energy 

containing region and of the derivative structure in the fine scale 

spectral region are developed and studied in this chapter. The 

derivative model is shown to simulate the transfer of energy toward8 the 

vlscou8 Subrange in.a manner similar to a theoretical model of Pao 

(1965, 1968). 

5.1 Velocity Model 

In Section 2.3, the equivalence between the statistical structure 

of turbulence in the form of moments of the probability density 

function, and in the form of kernels of a functional representation 

was examined briefly. Let us pursue this equivalence somewhat further. 
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The W-H functional expansion of a (one-dimensional) representation of 

velocity is given by 

u(x) - I K1(xl) H1’x - x1) dxl + 
I I 

K2(xl, x2) 

H2(x - xls x - x2) dxl dx2 + 
I I I 

K3(xl. x29 x3) (5.1.1) 

H3(x - x1’ x - x29 x - x3) dxl dx2 dx3 + . . . 

A hierarchy of moment8 follow8 from (5.1.1) by forming successive 

product8 between u(x) and u(x + Ax) and averaging in x. The result is 

a set of simultaneous integral equations in the kernels, which, for 

Ax - 0, is given symbolically by 

u=o 

K3K3 + . . . (5.1.2) 

K2K2K2 

K2K3K3 + . . . 
(5.1.3) 

KIKIKIK1 + 4 K1K1K1K3 + 6 K1K1K2K2 

K1KlK3K3 (5.1.4) 

. . . . 
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.’ 
, 

In the derivation of (5.1.2) - (5.1.4), the orthogaonality of,the 

Hermite polynomials, Hi, with respect to the p.d.f., (Barrett, 1963) 

implied in the averaging, has reduced the many cross-products among 

the polynomials to simple integer coefficients which indicate the 

multiplicity of products. of the Dirac 6-function. A corresponding 
d. . 

reduction in the order of the integrations is also implied in the 

SymbOliSIll ' 
I I 

K'Kj . 

The hierarchy of moments is infinite both in the number of moments 

and the number of term8 in each series. However, as observations only 
4 exist up to u (Appendix A) fo:rT-Pthe atmospheric boundary layer, the 

problem reduce8 to a finite sub-?:5c$lem. Consequences of this method . 

of closure will be examined in analyzing the results of the model. 

The formulation of the resulting finite set of coupled integral 

equations (truncated at K3> is given by (5.1.2) - (5.1.4). These 

equations are not easily amenable to solution without further eimpli- 

cation. A convenient method of approximation which overcomes many of 

the computational difficulties associated with the integral equation 

structure is an assumption that higher order kernel8 are multiple8 of 

the linear kernel, say 

Kj(xl....xj) = A 
j 
r &\) 

j k=l, 
(5.1.5) 

We shall refer to this approximation as the method of separable kernels. 

Equation (5.1.5) is analogous to the turbulent closure Scheme8 in 

which higher order statistics are expressed in terms of lower order 

StatiStiCS. For example, in the classical closure scheme of most 
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boundary layer models, the stress is expressed in terms of the shear 

of the mean flow. Similar arguments are proposed in the quasi-normal 

models of Donaldson (1972) and Deardorff (1972b) for the vertical energy 

flux (a triple velocity product) in terms of the local energy (variance) 

structure. 

Physically, the separability hypothesis (5.1.5), when applied, say, 

for K2 , implies that the conditional response at the present instant 

for an impulse at xl, given a previous impulse at x2, is given by the 

response at xl weighted by a multiple, A2, of the response at x2. 

However, the conditioning of the response at xl by a multiple of the 

response at a time, or separation x2-x1 distant, is physically un- 

realistic. Instead, the weighting of the impulse as xl would depend 

more likely on the integrated history of the response from x2 up to 

x1' Accordingly, a more physically consistent closure scheme for K2 

would be 

K2(x1, x2) = A2 K1 (x,) x1 1 K (x) dx (5.1.6) 

x2 

This representation will be discussed again in terms of a separable 

kernel model for the derivative. There, the concepts leading to 

(5.1.6) are shown to be somewhat easier to specify in a phase space 

representation. Just as the simple Newtonian stress-shear relation- 

ship is often questioned (Lumley, 1970) on the basis of local 

representations, the overwhelming practicality and reasonable experi- 

mental agreement demand it be retained in lieu of a workable alternative. 

As demonstrated next, the simplicity of local separability (5.1.5) 
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reduces an otherwise unmanageable problem to workable proportions. At 

the sama time, it is possible by this method to achieve a reasonable 

simulation of the moment and spectral structure of the turbulence of 

the atmospheric boundary layer. 

t -2 KIK1 

K3 - A 3 K'K? 

The separability conditione. 

(55.1.7) 

(5.1.8)' 

are substituted in the truncated moment expansions (5.1.2) to (5.1.4). 

The result is 

where 

u2 - L2 + 2A; L4 + 6Ai L6 

u3 - 6A2L4 + 8A23 L6 + 36 A2A3L6 + 108 A2A3L8 

u4 - 3L6 + 24 A3L6 + 60 A;L6 + 60 A;L8 

L2 - 
I 

[K'(x)]' di, L4 - (L2j2,.... 

(5.1.9) 

(5.1.10) 

(5.1.11) 

(5.1.12) 

The utility of the assumption of local separability is now clear. The 

problem has been reduced from a problem in simultaneous integral 

equationo to a problem in simultaneous algebraic equations. Further, 

the expansion is In terms of L2, which from (5.1.9) can be seen to be 

- 
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the linear contribution to the variance. Therefore, for a weakly non- 

linear functional representatin of a weakly non-Gaussian process, the 

moment expansions are perturbations about the linear, Gaussian process. 

Further, it is reasonable to describe such a representation as a 

quasi-linear model. 
. . 

A similar expansion for the spectrum arises from the separability 

conditions, 

4(f) - i&f)12 + 2A; 
I 

l&fl)l' l&f - fl)12 dfl 

+ 6A; II lkl(fl) I2 l&f,) 
I I .! 

I2 

l&f - fl - f2) I2 dfl df2 (5.1.13) 

The spectrum is then also expanded in the linear contribution to the 
^l 2 spectrum, IK I . 

The distribution of the moments (variance, skewness and kurtoeie) 

of velocity and buoyancy, as a function of thermal stability, 5, are 

described in Appendix A. The data are drawn from the Kansas experiment. 

The solution for L2 , A2 and A3 from (5.1.9) to (5.1.11) will therefore 

also be a function of stability. For convenience, the model is re- 

stricted to a non-Gaussian extension for the vertical velocity component. 

Equations (5.1.9) to (5.1.11) were solved by iteration. The results 

for the contributions to the variance, skewness and kurtoeis for 

various thermal stabilities are given in Figures 5.1 to 5.3. 

In Figure 5.1, the linear contribution, L2, is the principal source 

of variance. The non-linear contributions (2Ai L4 and 6Ai Lb) increase 
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Figure 5.1. Partition of variance of vertical velocity for a 
cubic, separable model. 
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Figure 5.2. Partition of skewness of vertical velocity for a 
cubic, separable model. 



87 

I 
-I n ,. -1. w. 

5 

Figure 5.3. Partition of kurtosis of vertical velocity for a 
cubic, separable model. 
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Figure 5.4. Partition of spectrum of vertical velocity for a 
cubic, separable model. 
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monotonically with decreasing thermal stability. The cubic contribution 

to the variance exceeds the quadratic portion. In Figure 5.2, for the 

partitioning of the skewness, the major contributor at all c is from 

the term 6 A2 L4. The term 36A2A3L6 becomes only an appreciable fraction 

of the,total skewness for c N 1. However, in the contributions to the 

kurtoeis (Figure 5.3), the cubic term, 24A3L6, dominates the quadratic 

term 60A2L6 2' 
In summary, the major contribution to the (non-zero) skewness 

involves a term linear in A2, as shown in Figure 5.2, and the deviation 

of the kurtasie from a Gaussian representation is accounted for by a 

term quadratic in A3, as shown in Figure 5.3. However, the major non- 

linear contribution to the variance (Figure 5.1) occurs from the third 

order effect in A3 rather than a quadratic effect in A2. Alternatively, 

the distribution of variance is not monotonic with the order of,the 

kernel. This effect has been reported and examined by Crow and Canavan 

(1970). 

The spectral partition of variance (5.1.13) resulting from an 

iterative solution using the values of L2, A2 and A3 for neutral 

stability is presented in Figure 5.4. Both the quadratic and cubic. 

contributions increase with decreasing scale. The increased ef.fect of 

non-linearities with increasing f is qualitatively consistent with the 

results of Stewart (1951) and Frenkiel and Klebanoff (1967). From 

dynamical considerations, it is expected that non-linear effects are 

dominant in the inertial sub-range, say f - 10. However, the largest 

relative contribution to the variance (non-linear/linear) at f - 10 

is only about 0.25. Although this ratio increases with stable 

stratification, its maximum value under any stratification is only 0.5. 
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Therefore, there are indications that the dynamical structure of the 

model is not represented properly. This point ie examined further in 

a later discussion. 

In Chapter 3.0, the concept of memory, for a linear system, was 

defined by 

Mem - j- K'(x,dx,/- ~[K1(x)12kd1'2 . 
0 0 

(5.1.14) 

An alternate concept for memory, based on (5.1.14) is the limiting 

response as x + 0~. of the system to a step function at x - 0, that is, . 

: 

S(x) - 1 (x ’ 0) (5.1.15) 

-0 (x < 0) (5.1.16) 

The normalization by [K1(x)12dx simply redefines the system as one 
I 

having an output with unit variance. It is natural to extend this 

alternate concept of memory to a non-linear system. The resulting 

definition of memory is given by 

2 Mem - &ml + A2(Meml12 + A3(Mem,))/u (5.1.17) 

where 

-l= K'(x)dx (5.1.18) 



In (5.1.17) 
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7 - L2 + 2A3L2)2 + 6A2,(L2)3 (5.1.19) 

Equation (5.1.17) is consistent with previous decompositions because 

the total memory is itself expanded in terms of its corresponding linear 

contribution, Meml. 

The decomposition of the memory for the non-linear representation 

of the w process, using the solution for L2, A2 and A3, is presented in 

Figure 5.5. The linear memory contribution, Meml (defined in (5.1.18)) 

is less than that for a totally linear representation. The loss of 

linear memory follows from Figure 5.4 for the spectral distribution of 

linear variance. Because the ratio of non-linear variance increases 
1 with f, the contribution to K near 2 - 0 must be less for a non-linear 

model than a linear representation. Accordingly, the linear memory is 

reduced. The linear contribution, Meml, represents more of the total 

memory in stable stratification than in unstable stratifications. This 

trend is consistent with previous results for the increasing effect of 

the non-linear aspects of the functional representation for decreasing 

r* In Figure 5.5, the relative contributions of variance in the quad- 

ratic and cubic terms is also reflected in the relative contributions 

of the cubic and quadratic terms of the total memory. 

The response function, K1, of a non-linear representation departs 

most from the corresponding function of a linear representation 2 - 0. 

The non-linear memory changes are exaggerated by the squaring and cubing 

operations in (5.1.17). For initial responses greater than unity, (such 

as occur for C < 0) the result is an increase in the contributions to 



TOTAL 
MODEL MEMORY 

QUADRATIC ..TRlEi”N 

-I. 0. I. 

Figure 5.5. Partition of memory of vertical velocity for a 
cubic, separable model and a comparison with 
linear model. 
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the non-linear memory components at the expense of the linear component. 

Conversely, for initial responses less than unity, (as for the stably- 

stratified region, 5 > 0), the effect of squaring and cubing the linear 

memo* contribution is to reduce the non-linear memory contributions 

relative to the linear part. Roth of these conclusions are consistent 

with the relative distributions of memory in Figure 5.5. 

An energy cascade by interactions among wave numbers is an important 

characteristic of turbulent flows with a large Reynolds number. There- 

fore, it is interesting to estimate the inertial transfer of energy 

arising from the non-linear term of the equation of motion (u&~/ax) for 

the simulated one-dimensional process. First, let us consider the 

Fourier transform of the inertial term. The result is 

Tr(f) - - & Im {c*(f) '{i(fl)"u(f 
I 

- fl) dfl) (5.1.20) 

where Im(} represents the imaginary part of a complex argument. For 

the W-H expansion of 2, given by (2.3.6), the expected value of 

(5.1.20) becomes 

K(f) - - f ImG?(-f) 
I 

&-P) i2(f,p) dp 

1 -- 
2 i2(p, f-p) &-p) &p-f) dp 

(5.1.21) 

+A 7r i2(P, f-P) I 
i2(-p, r) i2 (-r, p-f) dr dp 

+ . . . . I 
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Further, the separability condition, (5.1.7) reduces (5.1.21) to 

E(f) - - f 
lr2 

Im iA21&f)12 1 lf;l<~>(~ dp 

A2 - 2 
I 

i&p)12 +?Xf - p)12 dp 

A3 
+;r?- 

(5.1.22) 

dr dp + . ..I 

An inspection of (5.1.22) reveals that the terms bracketed by i) are 

all real. Therefore, 5 is given as the imaginary part of a real num- 

ber, and consequently 

Tr(f) - 0 (5.1.23) 

Accordingly, there is no transfer of energy at all by the separable 

kernel model of velocity. In its present form, the quasi-linear model 

is dynamically inconsistent with known characteristics of turbulent 

flow. 

In order to have a non-trivial transfer of energy, it is necessary 

to have an imaginary part to the terms bracketed by 1) in the right 

hand side of (5.1.21). The fact that the separable kernel model has 

only a real part stems from the lack of phasing between the Fourier 

transforms of the kernels. The interactions between kernels have been 

shown by Crow and Canavan (1970) to be the equivalent mechanism for 

tranefering energy as the interactions between velocity components at 
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different wave numbers. These authors also demonstrated that the W-H 

functional representation is handicapped by a need to include very 
A 

many kernel interactions to simulate the interactions of u over wave 

number space. Therefore, the quasi-linear model for velocity shares 

the dynamical. shortcomings of W-H functional representations that are 

significantly more sophisticated. 

However, the redeeming feature of the separable kernel method is 
4 

that it leads to a faithful reproduction of the low order statistical 

structure of observed data. We next examine a model for the derivative 

of the longitudinal velocity component which better represents the 

' dynamics of energy transfer. 

5.2 Derivative Model 

In earlier discussions (Section 2.2), it was noted that the small 

scale (f >> 1) structure of the derivative of velocity in isotropic 

turbulence was distinctly non-Gaussian, and that the dynamical process 

at such scales was distinctly non-linear. The results for the non- 

linear velocity model of the previous section indicate that a simulation 

of the dynamics of turbulence.with a truncated set of kernels, even for 

a weakly non-Gaussian situation, requires a more sophisticated closure 

scheme. We now demonstrate that the method of separable kernels applied 

to a model of the derivative of longitudinal velocity, for a modest 

range of Reynolds number, results in a plausible dynamical analogy. 

Consider the W-H functional expansion of a derivative of the 

longitudinal velocity in the mean wind direction 
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e - d(x) - / D'Hl + /I D2 H2 + . . . (5.2.1) 

The relationship of the moments of (5.2.1) in relationship to the 

kernels, D1, is similar to that given in (5.1.2) to (5.1.4). In the 

sams abbreviated notation, the interrelationships are 

79 . I J D3D3 + . . . (5.2.2) 

D1D1D2 + l J I D2D3D3 

(5M2.3) 

+ . . . 

DIDIDID1 + 4 D1D1D1D3 + 6 

D1D1D3D3 (5.2.4) 

D1D2D2D3 

where the orthogonality of the Hermite polynomials has determined the 

integer coefficients. Again, in analogy with the non-linear velocity 

model, it is convenient to.aseume that the kernels of the derivative 

process are separable, 

Dl(xl,...xi ) - Ai : D1(xj) 
3-l 

(5.2.5) 

The coefficients Ai correspond to the coefficients Ai of the velocity 
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model. The result of substituting (5.2.5) in (5.2.2) to (5.2.4) is a 
- ,. 

set of algebraic equations 

zMA2 + 2 2A2, X 4 +. 6 A3 2 A '6 + . . . 

'. 

3 4 d * 6A2, A + 3 8A2 6 + 36 A2 A3 A6 + 108 A2 A3 Aa 

+ . . . 

d4 - 3X6 + 24 A3 AC + 60 A;, h6 + 60 A; X8 + . . . 

(5.2.6) 

(5.2.7) 

(5.2.8) 

where X2 is the linear contribution to the variance of the derivative 

given by 

A2 - I [D1(x)12 dx (5.2.9) 

4 The structure of moments for the derivative, up to d , are drawn 

from results reported by Wyngaard and Tennekes (1970). Their results 

for the skewness and kurtosls for the longitudinal velocity component 

form a convenient basis,for a truncated representation similar to that 

given In Section 5.1. Based on the log-normal probability density 

function for a derivative process (Gurvich and Yaglom, 1967), and 

Kolmogorov's (1962) hypothesis concerning the probabilistic structure 

of the local dissipation, Wyngaard and Tennekes found from some 

empirical data that 

3 - 3/2 
d /(d2) 

3/16 
--'PT 

t” 
(5.2.10) 
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21 (T)2 - =2 % 
112 (5.2:11] 

where RT Is Reynolds number based on the Taylor microscale. Examination 

of Figures 5 and 6 of the paper of Wyngaard and Tennekes lead to the 

empirical estimates 

=1 - 0.16 (5.2.12) 

c2 = 0.40 (5.2.13) 

Further, the Taylor microscale, XT, can be related to the generative 

scale length, a, for turbulence in local balance between generation 

and dissipation (Tennekes and Lumley, 1972, p. 67) 

$- 15 
(E!E)l/2 

and consequently 

In terms 

skewness 

% 
- (15 Re)l'2 

of the Reynolds number of the generative 

and kurtosis of the derivative become 

3, &3/2 - - 0.21 Re3'32 

T/ (2)2 - 0.79 Re1'4 

(5.2.14) 

(5.2.15) 

region, Re, the 

(5.2.16) 

(5.2.17) 
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Wyngaard and Tennekes pointed out that dependence of the skewness 

and kurtosis on the Reynolds number violates the original hypothesis 

of Rolmogorov. However, the dependence on Re is rather weak because 

of the smallness of the exponents, 3/32 and l/4. To be consistent with 

the formulation leading to (5.2.16) and (5.2.17), it is necessary to 

re-interpret the dissipation in terms of a locally averaged estimate 

(Rolmogorov, 1962; Oboukhov, 1962). 

The estimates (5.2.16) and (5.2.17) for a given value of Re were 

substituted in (5.2.6) to (5.2.8), and the equations solved for A2, A2, 

and A3 by iteration. The model must be restricted to neutral stability 

because there is no available information on the distribution of the u- 

derivative skewness and kurtosis with stability. Table 5.1 summarizes 

the distribution of variance, skewness, and kurtosls for various Re. 

For Re 1 104, the iterative method of solution of the non-linear 

algebraic equations, (5.2.6) to (5.2.8), did not converge. The skew- 

ness and kurtosis estimates according to (5.2.16) and (5.2.17) imposed 

by truncated of the moments to a finite number In order to represent a 
A 

process with a large Reynolds number (>lO') is not uniformly valid. 

Also, inspection of Table 5.1 indicates that the non-linear contribution 

to the kurtosis (24 8,X6) is negative for Re 2 102. Because only 

positive values of kurtosis, like variance, have physical significance, 

this result is Indicative of an unrealistic interaction among the ker- 

nels remaining after truncation. 

and 

the 

104, where the model does not 

solution for A2 and A2 and A3 

An empirical form 

However, for a range of Re between lo3 

radically depart from a Gaussian model, 

appears to be successful. 



Table 5.1 

Partition of variance, skewness and kurtosis of u - derivative 

loglo Re 

Variance Skewness K&tosis. 

A2 .2 2A2X2 6A2X6 .3 6h2h4 8A3X6 2 36A2A3i6 3X6 24A3A6 60A;X6 

1 .958 .012 .030 -.443 .ooo .191 2.64 -1.58 .342 

2 .987 .ooa .004 -.377 -.002 .062 2.89 -0.64 .240 

3 .966 .005 .029 -.276 . 000 -.117 2.71 1.59 .131 
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U 

D;(f) = 1 + (Bu f) 4'3 L(f) 

101 

(5.2.18) 

was chosen for the spectrum of the u - derivative. L Is the one dlmen- 

siona4slmilarity solution (Pao, i965) for the viscous subrange, given 

by 

I 1 
L(f) - (1 - 52)52'3 exp I- 

0 
+ a(;/cg4'3] 

where 

r I f ReB314 

(5.2.19) 

(5.2.20) 

for neutral stability. The coefficients Au and BU in (5.2.18) were 

calculated according to the variance and dissipation compatibility 

conditions (Appendix A). 

The linear contribution to the spectrum of the derivative is given 

in Figure 5.6 for several values of Re. The effect of the viscous 

tall does not become significant in the case of Re - lo3 until f p 350 

which is considerably smaller than the scales of interest for the majority 

of engineering applications. However, the maximum values of Re and f 

of the model are underestimates of the respective atmospheric values. In 

Figure 5.6, there is an Increase in the variance of the derivative at 

smaller scales with an increase in Re. The increase in the variance Is 

itself felt in the Increase In the response at smaller scales (Table 5.2). 

The structure of the response function, D:(s), is given in Figure 5.7 

for Re - lo2 and 5 = 0. The response functions for a total linear 

representation of &t/ax and the linear and non-linear representation of 
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Figure 5.6. Linear part of spectrum of derivative of 
longitudinal velocity component for various 
Reynolds numbers. 
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Y 
Figure 5.7. Comparison of non-linear response of derivative 

of longitudinal velocity component with linear 
response of derivative and with non-linear and 
linear responses of longitudinal velocity 
component. 
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Table 5.2 
. . 

Magnitude and location of the maximum response 

and linear contribution to the memory of u - derivative model 

loglo Re D1 
WX 

ii max Mem, 
J. 

1 0.25 0.20 0.824 

2 2.8 0.027 0.0 

., ., 
u are also presented. The maximum response for the u - derivative 

process occurs at large separation and is less than the maximum response 

for the linear process. The reason for changes in the non-linear 

structure relative to the linear were discussed in Section 5.1 in re- 

lation to the non-linear velocity model. The increase of the ratio of 

non-linear to linear variance with decreasing scale, for a given total 

spectral content, is associated with the reduction in the linear response 

at small separations, say j; < 0.5. 

In the previous section, we discussed the lack of dynamical 

consistency for a separable model of the non-linear, non-Gaussian 

representation of velocity. The lack of phase interactions among the 
h 

Fourier transform of the response functions, Ki, resulted in a lack of 

energy transfer inertially. Therefore, we examine the inertial transfer 

properties of a separable W-H representation for the derivative for its 

phase and energy transfer properties. A series of equations for the 
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Interrelationships between the kernels Ki and Di follow from the W-H 

expansions for the velocity (5.1.1) and the derivative (5.2.1) when 

each expansion is substituted in the identity 

u(x) - (5.2.21) 

Terms of the expansion are gathered In like orders of the (orthogonal) 

Hermite polynomials. For the separable derivative model, the lnter- 

relationships become 

K1(xl) - O I- D1 (y + xl) dy 

2 0 

K (x sx ) 
12 - A 

I 2 .-cQ 
D'(y + xl) D'(y + X2) dY 

(5.2.22) 

(5.2.23) 

The relationship (5.2.23) between the kernels Ki of the corresponding 

velocity model differs from the model of Section 5.1. In particular 

K2(x,,x2) j A2 K%,) K’(x,) (5.2.24) 

where A2 is a constant. 

A procedure similar to that used In (5.1.1) and (5.2.11, but using 

Fourier transformed equivalents, results in a sequence of expressions 

between Gi and ii given by 

I f ^l 
1 K (f ) - ? (fl) 1 

i (f1 + f2) i2(flSf2) - i2(flSf2) 

(5.2.25) 

(5.2.26) 
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Substitution of the Fourier transform equivalent of the separability 
^2- of the derivative process (5.2.5) leads to an expression for D in terw 

of G1 given by 

s2 (flsf2) - A2 2 (fl) G1 (f2) (5.2.27) 

Finally, the combination of (5.2.25), (5.2.26) and (5.2.27) results in 

a succinct statement of the kernel interaction structure of the cor- 

responding velocity model 

^2‘ K (f,f)-A 
,i 5l;, ,f2 

12 2 Cf + f 1 K1 (fl) K1 Up) (5.5.28) 
12 I .: ,? 

From (5.1.21), the energy transfer for the separable derivative model 

becomes 

Tr(f) --fA Im(if 
IT2 2 

2 ’ I $$ I&P) I2 dp 

-1 
2f I 

P(f - PI 

l&f) 

l&f 

(5.2.29) 

- p)12 l&f - pII2 dp) 

An additional term involving a triple product of i2 (and hence A2) has 

been neglected In (5.2.29). The expression in (5.2.29) in the brackets 

1) is purely Imaginary in contrast to (5.1.21). Therefore, the energy 

cascade is non-trivial for a separable derivative model in contrast to 

that for a separable velocity model. For convenience, we simplify 

the notation by introducing a function for the common term flf;112. 

A(f) - fl&f)12 (5.2.30) 
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Equation (5.2.29) reduces to 

fA2 K(f) - - 
lT3 

Fdp - & A(p)A(f-p) dp) (5.2.31) 

Computationally, (5.2.31) is evaluated from estimates of A based on 

(S.2.30) and (5.2.25). 

Estimates of f z(f) derived from (5.2.31) are displayed in 

Figure 5.8 for Re - 102. The transfer of energy is confined to the 

viscous region, with negligible energy transfer in the range 10°~f~lOl. 

For comparison, we have indicated the theoretical prediction of the 

transfer function arising in the model bf Pao (1965, 196s) for isotropic 

turbulence. Pao models the energy transfer as a convergence of spectral 

flux, S(f), given by 

S(f) - E 0 ew - 3/2 a (f/fkoL)4'3 

where 

E(f) - 5 S(f) 

(5.2.32) 

(5.2.33) 

The curve for F shown in Figure 5.8 represents a one-dimensional 

energy transfer estimate derived from (5.2.23) based on the assumption 

of isotropic energy tranafer (Batchelor, 1953, p. 50). The agreement 

is gratifying although the Pao model contains a wider inertial sub- 

range of nearly zero energy transfer than does the separable derivative 

model. 3 
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Figure 5.8. Comparison of spectral energy transfer in viscous 
sub-range for derivative model and similarity 
model of Pao. 
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The lack of energy transfer in the generative region (not shown) Is 

in serious disagreement with known features of large scale turbulence 

(Lumley and Tennekes, 1970, p. 271). It remains an unresolved problem 

to develop a model based on a W-H representation which will adequately 

reproduce the spectral, flux convergence of the generative region. 

In summaryI it is concluded that for a reallstically large Reynolds 

number range (103<Re<10!) the derivative model adequately represents 

the low order moment structure and the inertial properties of the u 

component of turbulence In the viscous subrange. For some applications 

such as those involved with systems response at scales comparable to the 

viscous subrange, the derivative model, as described above, may be 

sufficient. But for problems involving eddies with dimensions of the 

order of the energy containing eddies; neither the velocity nor the 

derivative models adequately represent the non-linear features of that 

region as manifested in a spectral transfer of energy. 

We now move to an application and evaluation of the simulation of 

realizations of turbulence by some of the linear and non-linear models 

discussed in Chapters 3.0, 4.0, and 5.0. 
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6.0 DEMONSTRATION AND EVALUATION: OF MODELS 

The development of Chapters 3.0, 4.0s and 5.0 has concentrated on 

the calculation of the response functions. from given statistical data. 

The linear filter Is derived from a predetermined spectral form whereas 

the non-linear filters of Chapter 5.0 require additional empirical data 

in the form of third and fourth moments. It is the purpose of this 

chapter to briefly describe the Implementation of the results derived 

in the previous chapters for the simulation of turbulence. The dis- 

cussion is limited to linear and non-linear models of a single velocity 

component. 

6.1 Generation of White, Gaussian.Ser&es. 

Standard computer sub-routines exist for the generation of randomly 

ordered, Gaussian series. The difficulty with using these random 

number generators lies in their small but significant deivations from 

a Gaussian distribution for moments of order greater than 2. The 

white spectrum condition Is improved iteratively by several random order 

shuffling6 of the input series. 

The problem of non-Gaussianity was overcome by generating random 

values from the cumulative probability density function of a Gaussian 

process. For a Gaussian process with mean 0 and variance 1, the 

probability, p, that a sampled value, s, will be less than x, 

p - Pr(8 5 x) 

Is given by 

(6.1.1) 



111 

p - erf(x) (6.1.2) 

The range of p is [OS11 for a domain of x (-oo,-). Conversely, the 

Gaussian distributed variable x, which occurs with probability p is. 

given by 

x = erf'l(p) (6.1.3) 

The generation of N values of x from (6.1.3) was achieved for an equl- 

spaced partition of the range of probability, p, into N increments. The 

limit of accuracy of the routine for the inverse error function 

(Abrsmowitz and Stegun, 1964) of 5 10m5 for single precision compu- 

tations limits the length of generated time series to about 2 lo4 points. 

Conversely, because the approximation to Gaussian moments of order 

greater than 2 becomes increasingly dependent on several rare large 

deviations, it is necessary to generate a minimum number of points to 

achieve approximate Gaussianity In the higher moments. The minimum 

then depends on the degree of accuracy desired In the moments of the 

filtered series. The conditions on the length of the series are less 

stringent for linear simulations because of a lack of interaction 

among moments. 

6.2 Linear Model Test 

Several methods are available for the evaluation of the trans- 

formation 

y(t) - I &T) E(t - T) dr 
J 

(6.2.1) 
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where K' Is the filter and 5 and y are the white and filtered series 

respectiveiy. The direct evaluation of (6.2.1) by-either a discrete 

analog or a quadrature scheme results in an additional shaping of the 

input spectrum in addition to the filtering by lf;l12. Therefore, it IS 

-advantageous to utilize the Fourier transform equivalent of (6.2.1), 

given by 

h = 2(u) i(w) (6.2.2) 

The evaluation of il in (6.2.2) may be made in either of several ways. 

The first method is the direct evaluation of f;l from K. However, this 

method was found to be inexact in specifying the low frequency (wave 

number) spectral content. This error in filtering the large scales 

arises from the recursion involved in'estimating the Laguerre coefficients 

(Appendix B). A second method which is more exact Involves by-passing 

the redunant step of computing K1 and its Fourier transform. The 

method of spectral factorization (Chapter 2.0 and Appendix B) results 

in an exact estimate of f;l directly from the given input spectrum. 

However, in order to accommodate the fast Fourier transform techniques 

it is necessary to interpolate the estimate of ?, or more correctly, 

its regularized spectral equivalent to equal increments of w (or f). 

As a result of the spectral factorization il Is tabulated at equal 

increments of u where 

w=tanu/2 . (6.2.3) 
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The, procedure,used to estimate, S'(U) was to interpolate:the regularized 

spectral factors for the u derived from the inverse of (6.2.3) and then 

to transform the w-space using the relationship (Rino, 1970) 

I 

2 (w) - i(u) [2-l/2 (1 + exp(-iu))ln+l (6.2,.4) 

where i and n are defined in Appendix B. The interpolation scheme used 

to interpolate $ was a third-order spline function routine. The success 

of this second method is guaranteed by the fact that the regularized 

spectral density functions are smooth, slowly varying functions of 

scale. 

The combined error of spectral factorization to estimate g and its 

interpolation to estimate f;l was found by computations to be,less than 

1O-3 of the modulus at a giveuscale. Therefore in estimating a 

spectrum the only discernible disparity between an input spectrum of 

turbulence and its simulation lies in the deviation of the white noise 

spectrum from unity or in its statistical variability. This non- 

whiteness can be eliminated inlspectrgl comparisons by normalization 

of the output spectrum by the input spectrum. Figure 6.1 presents a 

comparison of the empirical and simulated spectra of vertical velocity 

for a total length of simulation equivalent to about lo3 integral 

scales. The empirical form chosen for the spectrum of w is discussed 

in Chapter 3.0 and Appendix A. It can be seen from Figure 6.1 that the 

Rolmogorov spectral form for f >> 1 has been faithfully reproduced. It 

is concluded that within the extremes of statistical variability ex- 

pected in a single finite length of record, the spectrum of the 
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Figure 6.1. Comparison of spectra of empirically specified 
model and of simulated turbulence for a linear 
representation. 
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simulated turbulence normalized by the sample white spectrum is identical 

to the prescribed, empirical spectrum. 

This completes the demonstration of the linear filtering method, 

and we turn to an evaluation of a non-linear model. 

6.3 Non-Linear Model Test 

The specification of a white Gaussian input for stimulation is 

more critical for a non-linear simulation. Deviations from a white, 

Gaussian input process result in spurious correlations between the 

kernels of different orders. For example, in Section 5.1, if the 

input was non-white.or non-Gaussian, the moment expansions developed 

there would contain various correlation functions of the input process 

in place of the integer coefficients. In particular, for an input 

series, h(t), with correlation functions 

R2(r) - h(t) h(t + T) 

R3hl ~~1 - h(t) h(t + rl> h(t + ~~1 

the variance expansion is given symbolically 

J K'K'R + l 2 J J 
K2K2R + l 4 J 

K1K2R + l 3 J J 
K1K3R + l 4 J 

(6.3.1) 

(6.3.2) 

(6.3.3) 

J K3K3R 6 

J 
(6.3.4) 

K2K3R 5 
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to third order. The lack of orthogonality (relative to a Gaussian 

p.d.f.) results in the last three terms. The non-whiteness of the input 

process also results in multiple moment-kernel interactions. Con- 

sequently, deviations in output statistics for a non-ideal input are 

attributable to several sources of error simultaneously. 

Just as in the development of techniques for implementing the 

linear model, it is advantageous to first compute the Fourier transform 

of a simulated realization of turbulence. The expansion of the realiza- 

tion 

h) - i'(k) ;il(k) + J ii2 (p, k-p) ;;,(p;.k-p) dp 
1 I . 

(6.3.5) 

+ . . . . 

requires only a given input series il because the ii are related to il 

by the Gram-Schmidt orthogonalization procedure. For example 

f;, $9 k2) - il'kl) ;l(k2) - 6(kl + k2) 

Further, the expansion (6.3.5) reduces to 

h - i(k) + A2 J 
j(p) j(k - p) dp + . . . 

(6.3.6) 

(6.3.7) 

+ AZ f;'(o) i'(k) + . . . 

where 



;(W - f;'(k) ii1 W 

for separable kernels. 
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(6.3.8) 

he form of (6.3.7) represents a functional expansion in G with 

corrections for non-orthogonality. The generation of j was described in 

Section 6.2. The actual simulation of u(x) involves an Inverse Fourier 

transformation after the computation of (6.3.7). 

Some results of a sample computation for a non-Gaussian process 

with a given skewness 0.23 and a given kurtosis 3.6 are displayed in 

Figure 6.2. The method of generation of the white, Gaussian input 

series was the same as described in Section 6.2. The procedure con- 

sisted of generating repeated, serial samples of 10R up to an arbitrary 

upper limit of 103R. The results for the skewness and kurtosis are 

not exactly those of the input. An examination of the higher moments 
- 

of the input, cn, for n 2 5, revealed that the number of points in each 

of the individually generated realizations of length 102, had a weakly 
5 6 non-Gaussian structure (5 - 0.06, and 5 = 14.5 rather than their 

5 6 Gaussian values of 5 - 0 and 5 - 15). The error in the limiting 

values of skewness and kurtosis are believed to arise by spurious 

kernel-moment Interactions as discussed earlier. Two methods are 

available to eliminate such errors -- either a trial and error method 

of varying the specified input skewness and kurtosis, or a generation 

of a longer, single realization, say 103R, so that the errors in the 

Gaussian generator are reduced. 

A second characteristic of the non-linear test simulation, is dis- 

played In Figure 6.3. The spectrum weighted by wavenumber raised to a 
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Figure 6.2. Comparison of moments of simulated process for 
successive increments to length of series with 
input values. 
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Figure 6.3. Comparison of spectra of empirically specified 
model and of simulated turbulence for a xion-linear 
representation. 
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5/3 power displays a slight systematic underestimation of the spectral 

content of the inertial sub-range and an overestimate at scales 

f ( 1. Apparently, the spurious moment interactions which result in 

an underestimate the total variance (Figure 6.2) vary in scale, as 

might be expected. Their accumulated effect is to reduce the effective 

value of the response function near x = 0 and increase the response at 

large scales. Further simulations utilizing single large arrays for 

individual sample realizations can be expected to overcome this 

implementation difficulty, in that the moment-kernel interactions will 

be reduced. 

It is concluded that the mechanics of simulating turbulence 

require a close scrutiny of the Gaussian and spectral properties of the 

input process in order to achieve realistic results. Further, it is 

recommended that computations be conducted in phase space in'order to 

utilize the accuracy of the spectral factorization procedure, with a 

transformation to real space after filtering. 
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7.0 SUMMARY AND CONCLUSIONS 

We have examined the method of simulating turbulence by filtering 

a white noise process. The development of models has been directed 

towards overcoming three areas of weakness in previous filtering 

methods.. First, the calculation of filters by digital spectral factori- 
'. 

zation of empirical spectra of surface layer turbulence eliminates the 

need to use spectra with known spectral factors. Second, the develop- 

ment of linear, multi-component models follows from the methods of uni- 

component models after diagonalization of the spectral matrix. Third, 
1:: 

the non-Gaussian structure of the velocity and derivative of a 

turbulent component which is associated with the patchy nature of 

turbulence was examined in several non-linear models. The results of 

each of these three areas of model development are reviewed and 

summarized. 

7.1 Linear, Uni-Component Models 

Because the linear filtering technique has enjoyed considerable 

success in a variety of applications, similar models were developed 

and expanded in Chapter 3.0 to incorporate aspects of boundary layer 

similarity and general spectral forms. A comparison of several 

empirical formulations, for surface layer spectra and the kernels 

derived from them, showed that the response structure, particularly 

for large scales, was sensitive to the original empiricism. A 

definitive formulation for the energy containing sizes of the 

turbulence awaits further experimentation and theoretical consolidation. 
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The initial response and width of appreciable response were also 

examined relative to the thermal stratification. Initial response of 

velocity, normalized by surface stress, was shown to increase in any 

stratification. Also, the range of response broadened with decreased 

stability. The simulated turbulence has a somewhat larger memory than 

the more commOn first order linear model -- a property of intereet for 

control problems. The initial response was shown to increase with 

he.ight under all stratifications, but to increase more rapidly in un- 

stable stratifications. The response function for the vertical 

velocity component wae.approxlmated empirically by the relationship 

&:;C) - yw 1'2(s) exp - (%/Bw)2'3 H(g) 

where 

yy2 - 0.75 (1 + 0.75 Isl) 

Bw = 0.7 (1 + 0.755 + 3.0C2) 

H(S) - 0.5 (1 + exp - 2.5 x -2/3) 

over the range 

(7.1.1) 

(7.1.2) 

(7.1.3) 

(7.1.4) 

- 1.5 2 r 5 0.5 (7.1.5) 
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(7.1.6) 

Further studies of the response structure as influenced by 

viscosity indicated a delay in the build-up of response to an impulse. 

The delay decreased and the maximum response increased with Increasing 

Reynolds number. The viscous model for large Reynolds number converged 

to the "inviscid" model. The response of the turbulence in the viscous 

models resulted from the lower energy content at scales comparable to 

the viscous eubrange. The memory of the simulated turbulent process 

decreased with an increase in the Reynolds number. 

The predictive function of the turbulence is essentially a 

single "now" value, and the mean square error of prediction grows 

rapidly with prediction distance. For example, the root-mean-square 

error of the prediction at half an integral length into the future is 

estimated to be 0.8 uw, where uw isthe standard deviation of the 

vertical velocity component. However, the model based on a -5/3 

spectral slope has a slightly larger memory than the usual first order 

linear model. 

A linear model of the derivative of the vertical velocity In the 

viscous subrange was examined for a later application to a non-linear 

model applicable to the modeling of diffusion. Because the response of 

the derivative is negative over a large range of scales, the memory 

of the derivative process is significantly less than that of the 

corresponding velocity process. Intuitively, the reduction in memory 

Is compatible with the concept of Increased disarray in differentiated 

signals of turbulent velocity or temperature. 
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The change in derivative response with a change In the viscosity 

indicated that the maximum response increased and converged towards 

smaller delay with increasing Reynolds number. The response at the 

large scales also converged to the inviscid response, indicating an 

increasing independence of the generative and viscous regions with in- 

creasing Reynolds number. Similarly, the memory of the derivative 

process decreases as the Reynolds number is increased. 

7.2 Linear, Multi-Component Models 

The method of linear simulation was extended to the multi-component 

structure of turbulence in the atmospheric boundary layer. Specifically, 

the model was devised to simulate the important cross-correlations 

between u, y, and 8. A simulation of the co-variances is equivalent 

to reproducing the momentum and heat fluxes characteristic of the 

surface layer. 

The problem was simplified by diagonallzlng the spectral matrix 

at every frequency. This was possible at scales where the matrix was 

diagonally dominant, or where the turbulence was nearly Isotropic. 

The resulting eigen-spectra were spectrally factored in the same manner 

as followed in the single component models. The response functions were 

then reoriented to the original component space by a special unitary 

transformation which preserved the minimum phase structure of the eigen- 

factors. 

The basic u-w model in neutral stratification was examined in 

terms of the corresponding single component response structure. In 

the multi-component model, the selfyresponse of u and w was found to be 
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less.than the response for a single component. Although the presence 

of a vertical momentum flux decreased the self-response, the total 

response of the vertical velocity to stimuli was increased by the cross- 

responee. At scales greater than f/10, the total response exceeded the 

sum of single component responses. Despite the increase in larger scale 

response, there is only a small change in the predictability of the w 

component. In addition, the prediction process remains essentially a 

single point, weighted "now" value scheme. 

The multi-component model was next extended to include the effects 

of stratification. Consideration of the w and v components revealed 

identical initial responses for different variances, and different 

memories. It was concluded that the initial response was solely a 

function of the spectral distribution of variance for scales much 

smaller than the energy-containing region. The predictability of this 

model increases with increasing instability, because of the increased 

low frequency content. The coupling between u and w also decreased 

with Increasing instability. It was concluded that the decreased 

coupling was a manifestation of the loss of a principal axle with the 

onset of convection. The total response of w for multi-component 

stimuli decreased with thermal instability and increased with stable 

stratification. 

7.3 Non-Linear Models 

It is well known that a linear representation of turbulence is 

fundamentally invalid for dynamical simulations. The difficulties in 

developing an alternative, non-linear model are three-fold. First, the 
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degree of non-linearity varies considerably as a function of scale, 

and second, suitable supporting experimental evidence on which to base 

even a weakly non-linear model is scarce. Lastly, the complex integral 

equations for the expansion of the moments must be truncated both for 

mathematical expediency and for the limited experimental information 

about the moments. 

Computational difficulties were overcome by invoking a simple 

closure for the relationships between kernels of different orders. 

These separability conditions are analogous to other closure schemes 

where higher order moments are expanded in terms of lower order moments. 

However, the scheme is basically incorrect in its physical interpreta- 

tion. me method of separability used in the non-linear velocity model 

assumes that the orders of response are locally interactive whereas it is 

-more realistic to expect higher order responses to be related to 

integral properties of the lower order response. 

The advantage of the separable kernel method is that it reduces 

the simultaneous integral equation representation of the moments to 

simultaneous algebraic equations. These equations can then be solved 

by simple iteration. Because the resulting expansion of the moments 

Is in terms of the linear variance, the model is referred to as a 

quasi-linear model. 

The results for the variance contributions of different degrees of 

non-linearity indicated that the linear contribution was overwhelming, 

because the degree of non-Gaussian behavior was not large. The 

spectral content of the non-linear contributions to the variance in- 

creased with decreasing scale. The non-linear contributions erroneously 
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form an insignificant part of the total energy even in the inertial sub- 

range. The initial response of the non-linear model is somewhat less 

than the initial response of the corresponding linear model because of 

the adjustment of the small scale variance in terms of non-linear 

contributions. It was concluded that a significantly larger response is 

possible in a more realistic, non-linear model of the inertial subrange. 

The memory of the linear contribution to the quasi-linear model is 

somewhat reduced by the removal of variance at small scales from the 

linear part of the variance. Because the non-linear contribution to 

the variance increases with instability, the memory also decreases as 5 

increases negatively. 

The quasi-linear model of velocity was developed for compatibility 

with the low order moment structure of a simulated turbulent velocity 

component. However, the model was shown to be incompatible with a 

spectral transfer of energy because of a lack of phasing between the 

kernels. 

A similar separable model was developed for the derivative process 

of the u-component of the turbulence. Estimates of the skewness and 

kurtosls as a function of the Reynolds number were based on the results 

of Wyngaard and Tennekes (1970). The model of Pao (1965) provided an 

estimate of the spectrum near the viscous subrange. The results for the 

truncated functional expansion were found to be inconsistent with 

measured large deviations from the Gaussian probabilistic structure. 

For large Reynolds number (Re 2 104), the non-linear 

did not converge. For Re 5 102, the solution of the 

physically unrealistic in that some contributions to 

algebraic equations 

model equations was 

the kurtosis were 
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negative. Otherwise, for Re of the order of 103, the separable 

derivative model is physically realistic , and dynamically consistent 

with a non-trivial spectral energy transfer. The energy transfer 

function closely approximates a similar estimate based on Pao's model 

of spectral flux convergence. 

7.4 Conclusions 

In this research, we have attempted to consolidate and expand the 

methods for simulating turbulence in the atmospheric boundary layer. 

The mathematical formulation of the filtering method of simulation 

has been based on empirical results of the accumulated research into the 

spectral, spatial and probabilistic structure of turbulence. The 

simulation technique has been extended to spectra without analytical 

spectral factors, to the multi-component spectral matrix, and to the 

non-linear, non-Gaussian structure of turbulence. 

Previously, in order to produce realizations of a process similar 

to turbulence, it has been customary to truncate the functional 

expansion of turbulence at the first (linear) order, and assume a 

Gaussian probabilistic structure. In addition, the spectrum of the 

atmospheric turbulence has usually been represented as f -2 rather than 

f-5/3 over the range of scalp.8 of engineering interest. Although the 

resulting misrepresentation of variance may be rather insignificant 

between these spectral models, it is not known a priori what effect the 

differences in variance distribution will have on, say, the predictive 

structure of the turbulence for purposes of control and stability. 

These questions have been examined in terms of some aspects of large 

scale response, and of predictability. 
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The necessary computational technique for all the model develop- 

ments was the digital spectral factorization technique. It IS 

concluded that the range of applications of simulated turbulence has 

been broadened by the numerical computation of the spectral factors of 

rather general spectral forms. 

The development of simulation models was extended to multi-component 

representations. The methodology was simplified considerably by 

diagonalization of the spectral matrix to produce multiple single 

component spectra. Each eigenspectrum is factored as in the uni- 

component model development. The multi-component spectral factors and 

response functions are formed by rotation of the elgenstructure by the 

eigenvectors of the spectral matrix. 

It was concluded that the total response of the multi-tiomponent 

models exceeded that of corresponding uni-component models at scales 

greater than about R/2. However, the predictability of the simulated 

turbulent process was not significantly increased in the multi- 

component models. 

The need to incorporate non-linear aspects in the simulation of 

turbulence, particularly In synthesizing the relatively rare, large 

scale gusts was discussed. Methods to achieve a reasonable simulation 

of the observed patchiness of atmospheric turbulence have led to the 

Introduction of the discrete gust concept. Such discrete gust models 

specify that turbulent realizations contain superimposed eddies of an 

invariant form, such as a ramp function. The strength and frequency 

of occurrence of such eddies is formulated for consistency with a 

Kolmogorov spectral structure and empirical estimates of the exceedance 
. .: 1 
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statistics of turbulence. While such methods are more realistic than 

linear, Gaussian spectral models, their dynamical basis Is controversial. 

Because the invariant eddy forms, for example the ramp function, are 

expedient mathematical idealizations, there is no direct relationship 

of the parameters of the particular representation with other aspects 

of the structure of surface layer turbulence. The implications of 

such models to known dynamical and statistical structures needs to be 

studied. 

The results here are a compromise between the discrete gust methods 

and the well-known filtering methods. The minimum-phase response 

functions constitute invariant eddy forms of random strength and 

occurrence. The amplitude of each eddy is determined by the history 

of the Gaussian, white noise input realization. The kernels which are 

the discrete gust form, have been shown to evolve as a natural property 

of the spectrum of the process. The kernels also correspond to a 

defineable physical mechanism, that is, as a response to an impulse. 

Moreover, the response functions have been demonstrated to be funda- 

mental in describing the predictive and probabilistic structure of 

the turbulence. It is concluded that the development of discrete gust 

models is not independent of the spectral or filtering method, and 

can be made compatible by introducing the concept of the response 

structure of the turbulence. 

The viewpoint taken here has been that the requirement for simu- 

lating large gusts can be met by systematic recourse to theoretical 

and empirical formulations of the statistical structure of turbulence 

in the atmospheric boundary layer. This approach involves use of the 
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spectral similarity theories of Kolmogorov (with appropriate extensions 

in the generative and viscous subranges), and use of published empirical 

data for the multi-component spectra against a framework of the Monin- 

Oboukhov similarity theory. In addition the formulation of a simple 

non-linear model of a velocity component has incorporated low order 

moment data so as to be consistent with Monin-Oboukhov and Reynolds 

similarity. 

The reduction of the non-linear simulation problem to workable 

proportions requires several mathematical simplifications. The (in- 

finite) functional expansion of the moments is truncated to the highest 

order of available data. An arbitrary specification of the inter- 

relationships among kernels of various orders reduces the numerical 

complexities from one of solving simultaneous integral equations to 

simultaneous algebraic equations. Although the separable model for 

velocity in the form chosen misrepresents the dynamics of the turbulence, 

it was concluded from an examination of the separable derivative model 

that It is possible to produce a realistic one-dimensional energy 

transfer locally. It remains to develop a model based on spectral 

separability for the generative region. 

It was concluded from an examination of test realizations based 

on a linear and a non-linear model that, within the limitations of 

generating white, Gaussian noise on a digital computer and the 

implementation of numerical methods in forming convolution that the 

method Is practical and forms a useful representation of the statistical 

structure of turbulence in the atmospheric boundary layer as it is 

presently understood and described. 
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APPENDIXA ~IRICAL RESULTS OF BOUNDARY LAYER STRUCTURE 

Some recently reported observational studies (Businger et al, 1971; 

McBean et al, 1971; Busch and Larsen, 1972) have significantly reduced 

the error variance within and between the estimation of similarity 

functions measured at different sites. For convenience, we choose the 

results of the Kansas experiment reported on by Businger et al, (1971), 

Wyngaard and Cote, (1971a), Wyngaard et al, (1971b), Kaimal et al, (1972), 

Wyngaard and Cote, (1972).because of their extensiveness and their 

internal consistency. 
';.' 

The similarity functions for shear, temperature gradient and 

dissipation of kinetic energy are given empirlcaiiy 

- for unstable stratification (- 1 < 'r; C 0) 

@mts) = (1 - 15 5F4 

$htr> - 0.74 (1 - 9 5) -l/2 

9, (0 - (1+ o.51612'3)3'2 

- and for stable conditions (0 < 5 < 0.5) by 

$,tr) - 1 + 4.7 5 

$h(<) - 0.74 (1 + 6.4 5) 

4c 03 - (1 + 2.5 c3'5)3'2 

(A. 1) 

(A. 2) 

(A-3) 

(A.4) 

(A-5) 

(A. 6) 
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Because the 'dissipation' of temperature variance was not measured 

during the' Kansas experiment, it was necessary to assume 

(A.7) 

The second moments have been fitted as quadratic polynomials in <, to 

the data listed in the catalogue of ihe Kansas data (Izumi, 1972). 

The results are displayed in Figures A.1 to A.5. The empirical 

representations of variance and co-variance are given by the following 

empirical formulae 
'.$I 

- for unstable stratification (- 1 < 5 < 0) 

52 u - 6.25 (1 - 0.40 s)2 

2 - 3 25 (1 - 1 0 C)2 . . 

ij2 - 1.35 (1 - 0.90 r)2 

e2 - 3.24 (1 + 0.87 I; + 0.40 r2) 

u6 - 3.70 (1 + 2.8 r + 2.6 r2) 

- and for stable stratification (0 < t: < '0.5) 

$- 6 . 25 (1 - 0.40 rj2 

5. \.. 

?- 3 . 25 (1 - 0.14 r)2 

(A- 8) 

(A. 9) 

(A.lO) 

(A.ll) 

(A.12) 

(A.13) 

(A.14) 
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3 w - 1.35 (1 + 3.2 L - 3.0 r2) 
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(A.15) 

7 - 3.24 (A.16) 

-.a. 

ue - 3.70 (1 - 2.0 t + 2:s r2) (A.17) 

The over-bar tilda denotes a variable scaled by u* or T, as appropriate. 

The limited range of t (-1 < t < 0.5), over which the empirical 

functions above are valid, excludes the free convection region of ex- 

treme, negative t and the extremely stable region. In the later case 

any turbulence that exists in the stable region is considered to be 

associated with gravity waves, and its structure to be dissimilar to 

the structure in the stability range with sub-critical Richardson num- 

ber (= 0.20) (Arya, 1972). These relationships therefore define the 

statistical structure of the turbulence in a region where thermal 

effects do not overwhelm mechanical effects. Also, estimates normalized 

by T, for 5 - 0 necessarily represent only an average about neutral 

stratification. 

Results for the similarity structure of spectra of velocity and 

temperature within the constant flux layer have been reported by many 

investigators (Fichtl and McVehll, 1970; McBean and Mlyake, 1972; 

Panofeky and Mares, 1968; Pond et al, 1971) in addition to the Kansas 

investigators. The normalized velocity spectra Gii(f, C) are usually 

represented empirically in a form ; 

f Q(f) - 
A&) f 

(1 + (B&S) f)n)5'3n 
(A.18) 
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Estimates of n vary between authors, the most popular being n 7 1 or 

n - S/3. Because there is no clear concensus of any preferred 

empirical form, we'have chosen a slightly different form given by 

213 f2/3 

f Q(f) - Aii % 
413 (A.19) 

1 + (Bit f) 

The Implied 2/3 slope of the energy distribution for Bif << 1 disagrees 

with Kaimal's results but is more in agreement with Busch and Larsen's 

findings. However, as it is doubtful whether Monin-Oboukhov similarity 

holds at such large scales, the correct formulation of the spectra 

would require modifying more than the spectral slope for f << 1. The 

functions Aii and Bii are determined for compatibility of (A.19) with the 

known asymptotic structure of the turbulent spectra in the Kolmogorov 

range and the variance estimates given in (A.8) to (A.17). The 

condition for the variance is 

f Q(f) df - @E2'3 Aii Bii-2'3 (3Tr/4) (A.20) 

and, the condition for the spectra for 1 << f << f KOL' where f KOL Is 
the normalized Komogorov scale given by 

f KOL - KZ(EV -3)1/4 

(A.21) 

becomes 
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f5/3 
G&f) - Aii $E 

213 
Bii 

-413 

(A. 22) 

where ui is the Kolmogorov constant appropriate to the I th variable for 

a non-dimensional spectral representation. From Equation (A.20), (A.23) 

and (A.24) 

Aii 
. al($t$)2 4,-4/3 (A.23) 

Bii 

For a value of Kolmogorov’s constant, a = 1.5, for a three 

dimeneional kinetic energy spectrum 

ai - (1, 4/3, 4/3) (18 a/55) for I - 1, 2, 3 

(A.24) 

(A.25) 

Similarly, the empirical functions for the temperature spectrum are' 

given by Equations (A.25) and (A.26), except $e is replaced by 0, l/3$ x 

and the coefficient, u i, replaced by the corresponding coefficient, 81, 

for temperature. 81 is not as well defined empirically as ai, with 

estimates ranging from 0.4 to 0.9 (Panofsky, 1969). For consistency, 

we have selected the empirical estimate based on the Kansas date, 

81 - 0.8 + 0.1. 

The coepectra of stress and vertical heat flux have been shown 

(Kaimal et al, 1972; McBean and Miyake, 1972) to have a -7/3 slope.in 

the inertial subrange. These findings are In agreement with anisotropy 
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arguments (Tennekes and Lumley, 1972). However t!he horizontal heat 

flux co-spectrum has a spectral slope which varies both wlth:height 

and stability. Kalmal, et al, report that the slope of the u9 co- 
.I 

spectrum decreases in unstable conditions from -3 near the'ground'to -713 

at the top of the surface layer, and that in stable conditions the slope 

it3 -s/3. The difference between -7/3 and -S/3 is considered insignifi- 

cant here, and the exponent of the cospectra is estimated everywhere to 

be -713. The empirical form chosen for the coepectra is \. 

Alj Kij 
f5/3 

f Gij - 1 + (B ij f)2 

(A.26) 

The scaling factors K 
kl ' 

which correspond to #I, 213 and 4~ # 
-l/3 

XC 
in the 

autospectra, have been determined empirically by Kaimal to be 

- for unstable conditions 

5,(C) - K3&) - Kle tti) - 1 (A.27) 

- and for stable conditions 

43(5) - 1+ 7.9 r; (A.28) 

K3&) - 1 + 6.4 5 (A. 29) 

%I ts) -1+175 (A.30) 

The empirical coefficients, A 
u and Bu 

, are determined from simultane- 
-.. 

oua algebra&conditions involving the variance and asymptotic structure 
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of the cospectrum, in a manner identical to the empirical representa- 

tion of the spectra. The asympototic constants, c 
kl ' 

(corresponding 

to ui and B, In the autospectra). were estimated on the basis of the. 

Kaneas?data (and the particular definition of f used in this study) to 

be 

%3 - - 0.14 

=30 - - 0.41 (A.32) 

=10 - 0.14 (A.331 

Finally, the coefficients A 
tl 

and Bij follow from the equivalent of 

Equations (A.25) and (A.26) and are given by 

Au - %j 
h ~6 1 )3/2 

(c 
cl Tr Kij 

BIJ 
, (& 43 1 )3/4 -- 

% = Kij 

where the normalized variances, I 
kl 

, are given as 

I13 - I38 - l 

(A.341 

(A. 35) 

(A. 36) 

(A. 37) 

This completes the empirical representation of the spectra and 

cospectra -- for a given scale height and stability. It is assumed 

-- - 
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in what follows that the cospectra involving v are identically zero at 

all stabilities because of the passive role played by v in the surface 

layer (Lumley and Panofsky, Chapter 3.-O). However, In order to complete 

the (complex) spectral matrix representation of the surface turbulence, 

It remains to establish the phase between the velocity and buoyant 

fluctuations. According to J. C. Wyngaard (private communication) the 

phase, determined on the basis of the quadrature and coepectra of the 

Kansas data, is indistinguishable from zerb. This result which differs 

from the observation of Deland and Panofsky (1957) is adopted for 

simplicity. ' * 

We now move to a discussion of the observations of the non-Gaussian 

probabilistic struct,ure of surface layer turbulence. If we consider a 

measured turbulent velocity conceptually as the result of a summation 

of.multiple random influences exerted on the flow prior to the obser- 

vation, it is reasonable to expect its probability distribution to at 

least approximate a Gaussian distribution according to the Central 

Limit Theorem. Early measurements (for example, Townsend, 1947) of 

the skewness and kurtosis tended to confirm this hypothesis. Some 

estimates for the skewneseee and kurtoses of single-point measurements 

made at Kansas (Izumi, 1972) are given in Figures A.6 to A.11 as 

functions of 5. The scatter is disappointngly large for most moments. 

Apparently, the averaging time, which must increase with the order of 

the moment in order to adequately sample the rare events (Lumley, 1970b, 

p. 73; Tennekes and Wyngaard, 1972) is not long enough. Visually, 

there appears to be a general increase in all the various skewnesses, 

with decreasing stability. Also the kurtosis of the longitudinal 

component, c, and the temperature are indistinguishable from a 
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constant, whereas the kurtosis of the vertical component decreases 

with decreasing stability. Monin-Oboukhov similarity is apparently 

only satisfied for the skewnesses of G and 8. 

A positive skewness indicates a greater probability of negative 

fluctuations whose absolute value does not exceed a standard'deviation 

and a greater probability density.of positive fluctuations larger than 

a standard deviation. Therefore, the ij component, in near-neutral 

conditions, has more small negative and large positive excursions than 

a strictly Gaussian distribution. This arrangement increases in un- 

stable conditions and decreases in stable conditions, possibly reverstng 

itself near C - 0.5. The temperature process Is likewise skewed. 

Presumably, in unstable condition the more probable large positive 0 

excursions are associated with the Increased probability of large 

positive w excursions. Finally, the longitudinal velocity distribution 

is synnnetric in the range, - 1 < 5 C 0.5. 

The kurtosls is a measure of the integrated probability density 

in the extremes of the distribution irrespective of the sign of the 

fluctuation. For a kurtosis exceeding 3, the process would have a 

greater concentration of large, absolute occurrences of either sign, 

greater than one standard deviation, than would a Gaussian process. 

From the data displayed in Figures A.10 and A.11 the vertical velocity 

and buoyancy fluctuations contain more large excursions than would occur 

In a Gaussian process. Also the u component (Figure A.91 is associated 

with a more regular process than a Gaussian process. With increasing 

instability, u and 8 indicate no pronounced change in their content of 

large fluctuations, while the w process tends to become more regular. 
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The non+aussian structure in terms of the skewness and kurtosis 

as a function of &ability has been approximated by the following 

relationships 

- for unrtable conditions (-1 < ‘F < 0) 

2 3 * 0.12 (1 -4.7 t - 2.3 s2) 

2 e - 0.34 (1 - 3.2 t - 1.3 C2) 

- and for stable conditions (0 < < < 0.5) 

3 
M3 - 0.12 (1 - 2.0 t) 

2 8 - 0.34 (1 - 2.1 r + 1.9 S2) 

while for the entire range (-1 < 5; < 0.5) 

4-O 

4 = 2.7 

I!$ - 3.7 (1 + 0.09 6) 

M4 8 - 3.4 

(A.38) 

(A. 39) 

(A.40) 

(A.41) 

(A.42) 

(A.43) 

(A.44) 

(A.45) 
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APPENDIX B DIGITAL SPECTRAL FACTORIZATION 

The spectral factorization method, discussed in Section 2.4, pro- 

vides a technique for determining a phase characteristic to associate 

with the known modulus (or spectrum) of a complex function, so that its 

Fourier transform will be a one-sided physically realizable filter. 

This appendix describes the implementation of this approach computation- 

ally. Its use Is not limited to rational spectra. The use of the 

fast Fourier transform (FFT) algorithm provides a very efficient 

method of solution. Other methods such as Wiener's predictive 

decomposition and Fejer's solution for, the roots of a polynomial 

(Robinson, 1967b) are slow and inaccurate by comparison. 

The turbulent process represented by the empirical spectra of the 

model is referred to as a continuous-parameter process. The necessary 

and sufficient condition for the spectrum of a continuous-parameter 

process to be factorable is that the spectrum be absolutely continuous 

and satisfy the Paley-Wlener condition that 

(B-1) 

In other words, the spectral representation does not converge for 

f * Q) as rapidly as an exponential, exp - f", where n ) 1. However, 

$(f) must nevertheless approach zero In the limit of large f. 

The applicati-on of the FFT algorithm to spectral factorization 

requires that the continuousTparameter process defined over - CO < f < a~, 

be converted to a discrete-parameter process over a finite range 

- 715 u f T, where 
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u - 2 tan -l f (B.2)" 

For a discrete-parameter, process with spectrum $, to be factorable its 

spectrum must be regular, or alternatively, 

I 
TT 

In JI du > - 00 
-lT 

Rino (1970) has shown that the 

regular only if the continuous 

the limit of large f no faster 

limit 

0.3) 

discrete parameter spectrum will be 

parameter spectrum approaches zero in 

than a power of (1 + f2)'+l or in the 

0 < llm +(f) (1 + f2)p+1 < QD (B-4) 
f+= 

where p is some positive Integer approximating the behavior of the 

spectrum in the limit. The coordinate transformation (B.2) guarantees 

that $ defined by 

@J(u) - (1 + co8 u)-('+l) @(tan u/2) (B-5) 

will be regular on [-x, IT]: 

We will follow the development of Section 2.4 in implementing 

spectral factorization, but with Fourier transformations in terms of the 

FFT algorithm. The expansion of In $ l/2 becomes 

In 
N-l 2Trnt C at exp(-i -$ 
t-o 

(~.6) 
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Equivalently, the & coefficients for the regularized process are 

Ot 
I + 7’ In [$(%)]1’2 CO8 ( N 

2xnt) 

n-0 
(B:7) 

From (2.4.20) the minimum-phase kernel transform, g, whose modulus 

ir @, ,iB givti by 

2xn 
i& 

2m -)=exph (N) 

where 

h C2p OLO 
N/2-1 

-1 2 C at (-1 I---+ 
t-l 

The final step is the recovery of K, where 

h A* 
KK -$I 

from 8 where 

0 ii* - JI 

The solution is given as an approximation (Rino, 1970) 

(B. 8) 

(B. 9) 

(B. 10) 

(B.ll) 

K(T)=& emT 
N 
c ?* LJ2r) 

n-0 

where Ln is the Laguerre polynomial of order n. 

derived from 8 by a Fourier transformation 

(B.12) 

The coefficient yn is 



Also, vl n Is derived from yn, by iteration 

y; = k Yo 
M-l 

M 
yj &- j-1 

I 1 g-1 +i yyl) 

01 
yo -g Yo 

0 
- 1 tr yj c j-1 + Yj) 

321 

JF1 

(B.13)! 

(B.14) 

(B.15) 

(B.16) 

(B.17) 

The computer program written to factor a given spectrum was 

calibrated for a spectral form 

9(f) - (1 + f2/N)-N (B.18) 

which has a known response function (for a given N) of 

K(i) I “‘:rf” exp - d/22 2 2 0 (B.19) 

-0 ii<0 (B.20) 

The difference between the analytical and numerical solution, for various 

values of N, are displayed in Figure B.l. The error is insignificant 

up to about j; = 7 and N - 4 and is insignificant to large % as N de- 

creases. For N - 1, the error is of the order of the single precision 
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Figure B.l. Numerical error in estimating response functions 
of several spectra. 
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accuracy. Although the response function itself is relatively amal+' 

(- 10W3), for large 2, say j; > 5, for all N, it is of the order of/the 

error in the method. As a result any simulation of turbulence at 

scales about 10 times the energy-containing scales using the kernels 

can be expected to be in error. However, as such scales are not of 

imediate practical concern, the algorithm for spectral factorization 

Is considered accurate for most purposes. 

To be factorable, a given spectrum must satisfy (B.4). The question 

arises as to the compatibility of spectra which vary as f p+l in the 

limit of large f, where p Is not an integer. The approach used In this 

study has been to ensure that-the largest frequency, say, fKAK, 

represented by the FFT is at a scale much smaller than the resolution 

desired in constructing the filter. The nearest integer approximation 

to the parameter p in (B.4) is then computed on the basis of the 

spectral energy densities at fmax and fmax/2. Succeeding computations 

are then inaccurate only in their representation of the spectrum near 

f 
IlMlX’ 

or in the computation of K very near j; - 0. Suitable convergence 

for a f -5/3 spectral form was found by choosing fmax > 40, or well 

into the inertial subrange. 
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Simulation of Atmospheric Turbulence 
by Proper Orthogonal Decomposition 

John A. Dutton and Erik.L. Petersen 

ABSTRACT 

A method that produces realistic simulations of atmospheric 

turbulence is developed and analyzed. The procedure makes use of a 

generaiized spectral analysis, often called a proper orthogonal 

decomposition or the Karhunen-Loeve expansion. 

A set of criteria, emphasizing a realistic appearance, a Car' 

rect spectral shape and non-Gaussian statistics, is selected in 

order to evaluate the model turbulence. 

An actual turbulence record is analyzed in detail providing both 

a background for comparison and input statistics for the generalized 

spectral analysis, which in turn produces a set of orthonormal 

eigenfunctions and estimates of the distributions of the corresponding 

expansion coefficients. 

The simulation method utilizes the eigenfunction expansion pro- 

cedure to produce preliminary time histories of the three velocity 

components simultaneously, and then, as a final step, a spectral 

shaping procedure is applied. 

Two experiments are performed, providing two time histories of the 

velocity components of 30 minutes duration. This experimental tur- 

bulence is analyzed and judged to be a realistic simulation of actual 

turbulence. 

The method is unique in modeling the three velocity components 

simultaneously, and it is found that important cross-statistical fea- 

tures are reasonably well-behaved. It is concluded that the model 

provides a practical operational atmospheric turbulence simulator. 
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Simulation of Atmospheric Turbulence 
by Proper Orthogonal Decomposition 

John A. Dutton and Erik L. Petersen 

1.0 INTRODUCTION 

.The demands for a realistic simulation of atmospheric turbu- 

lence have increased over the years because of its obvious importance 

in diffusion, aeronautics, wind-loading of structures, and all 

boundary layer processes. 

Requirements to be imposed on turbulence simulation schemes must 

produce a compromise between the accuracy with which the empirical 

statistical structure is represented and the feasibility of the 

computational scheme. A set of criteria were suggested in a previous 

NASA report by Dutton and Deaven (1971). They are, slightly modified: 

(1) The model, through variation of internal parameters, should 

be able to simulate the various intensities of turbulence in the 

atmosphere and to provide an estimate of the likelihood of occurrence 

of each time history. This flexibility makes it possible to generate 

time sequences that approach threshold (or catastrophic) intensities 

for the systems whose response is being studied and to estimate the 

probability of failure. 

.(2) The model should produce time histories that exhibit the 

sequential behavior of actual turbulence. 

(3) The model should produce signals that possess the most 

notable observed statistical characteristics of actual turbulence: the 

non-Gaussian behavior of the density function and the exceedance 

statistics and the dependence of the energy spectrum on the -5/3 

power of the wave number or frequency over a wide range. 

Standard methods that filter a white noise process so that the 

resulting spectra resemble those of turbulence fail to satisfy most of 
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these criteria. Usually a linear filter is used with Gaussian white 

noise as input, and so the resulting simulated turbulence is also a 

Gaussian process, clearly contrad$ctory to observed evidence. 

The direct use of observed turbulence, which obviously satisfies 

the last two requirements, has only limited value because the first 

requirement is not satisfied. 

The fluid motions to be modeled are described completely by the 

Navier-Stokes differential equations together,with appropriate bound- 

ary and initial conditions. Despite the simplicity these equations 

possess compared to the complexity of the motions they describe, it 

is by no means feasible at the present, nor in the foreseeable future, 

to use these equations directly in operational simulation models. 

The model to be presented in this report is based on an approach 

suggested by Dutton (1968) and further elaborated by Dutton (1969) and 

Dutton and Deaven (1971). 

Information is extracted from measured turbulence by means of 

Loeve-Karhunen expansions and is carried in the model by the ortho- 

gonal functions and the statistics of the expansion coefficients. The 

method is based on the Proper Orthogonal Decomposition Theorem. 

In contrast to most models, this model generates all three 

velocity components simultaneously, and it is found that the simulated 

time histories can meet most of the requirements stated above. More- 

over, cross-statistics between components seem to be modeled satis- 

factorily to at least second order. 
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2.0 REVIEW OF SOME PREVIOUS SIMULATION METHODS BASED ON THE 

PROPER ORTHOGONAL DECOMPOSITION THEOREM 

The first attempt to apply the Proper Orthogonal Decomposition 

Theorem in the study of turbulence apparently was made by Lumley 

(1965). Before that, the basic theorem, given by Loeve (1955), had 

proven useful in the study of large-scale meteorological features 

(for example, Lorenz, 1965; Kutzbach, 1967). 

The outline for the application of the method in the simulation 

of atmospheric turbulence was given by Dutton (1968) and Dutton and 

Deaven (1969). The theory was discussed in some detail and an 

attempt was made to use the method to determine if the large gusts 

as measured at Cape Kennedy had a characteristic structure. Sixty 

large gusts for each of the components u and v were extracted from a 

turbulence record. It was found that eight eigenfunctions explained 

at least 97 percent of the variance for each component, leading to the 

conclusion that the large gusts had a characteristic structure. 

This result pointed to the possibility of simulating large gusts 

by using the eigenfunctions and by sampling the expansion coefficients 

from estimates of their respective distributions. 

Before this approach can be applied in practice, it is obviously 

necessary to determine: 

(1) how to model the turbulence between the gusts, 

(2) how large a fraction of the record shall be occupied by the 

large gusts, 

(3) how much of the total variance shall be due to the large 

gusts. 
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An answer to these questions was attempted by Smith (1971) in 

the research done under NASA contract NASA-21140 for his Master of 

Science degree. Smith tested and evaluated several simulation methods 

using the three criteria described in section 1. These three criteria 

were compressed to the following tests: 

(1) Does the simulated turbulence look like turbulence records? 

(2) Does the energy spectrum fall off as the -5/3 power of 

wavenumber? 

(3) Does the probability of getting small and large values 

exceed the Gaussian probability even though the density function is 

nearly Gaussian? 

(4) Does the exceedance statistics, as represented by the 

probability of crossing a certain level per unit time, look like those 

obtained from real turbulence? 

The following description (2.1-2.6) of methods and their evalua- 

tion is largely extracted from Smith (1971). Results of tests against 

the four criteria above are given in Table 1. 

2.1 Random White Noise 

Random noise as a discrete random signal that contains equal 

energy at all frequencies can be generated using the random generator 

available in almost all computer systems. It is constructed as an 

.ordered set of random variables such that for each point in time, the 

random variable is selected independently from a normally distributed 

population. 



TABLEl- AN EVALUATION OF SOME PREVIOUS SIMULATION METHODS 

t; 
0 

Criteria 

Generation Scheme 

Realistic Sequential A - 5/3 Slope 
Appearance of the in the Energy- Non-Gaussian Realistic Exceedance 

Time-History Spectrum Density Functions Statistics 

Random white 
noise no no no no 

Shaped random 
white noise improved yes no no 

Random noise 
with gusts Ot is FZo easy to 

distinguish the gust..) 

yes yes 
but exaggerated 

no 

Shaped random 
noise with gusts 

no 
(as above) 

yes yes yes 
but exaggerated 

Random noise with 
variable gusts 

no 
(as above) 

no yes Yes 

:. 
Shaned random noise 
with variable gusts improved yes yes yes 



2.2 Shaped Random Noise with Preserved Phase Angles - .-. 
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Because random noise clearly failed criterion 2 because of the 

flat energy spectrum, an obvious step was to take random noise and 

then shape the energy spectrum to give it the correct -5/3 slope. 

lhis was accomplished by taking the Fourier transform of the generated 

series and changing the Fourier amplitudes according to a predescribed 

scheme. The scheme also included an algorithm for preserving the 

Fourier phase, because these are believed to be of some importance 

for the intermittency of the turbulence (see section 2.8). 

2.3 Random Noise with Gusts 

The most pronounced failure of the method above was its inability 

to produce the non-Gaussian nature of the probabilistic structure. 

The method proposed by Dutton using the basPc structure of large gusts 

as revealed by empirical eigenfunctions was then attempted. From the 

first eight eigenfunctions, a number of gusts were constructed and 

inserted at random.into a white noise series. By trial and error it 

was found that the best result was obtained when the gusts occupied 

40 percent of the total series, and when the ratio of variance of gusts 

to variance of white noise was 19. 

2.4 Shaped Random Noise with Gusts - ~.~ 

The series generated in Section 2.3 was then subjected to a 

spectral shaping as described in Section 2.2. 
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2.5' Random Noise with Variable Gusts 

The same procedure as described in Section 2.3 Was followed 

except that before the gusts were inserted into the series, the 

length of the gusts was made variable by randomly expanding the gusts 

by factors of one, two, or three. 

2.6 Shaped Random Noise with Variable Gusts 

The series generated above was subjected to the spectral shaping 

process. Although this model apparently turned out as acceptable, 

it does not satisfy the requirement that it should be possible to 

generate a wide range of turbulence simulations by adjusting a few 

parameters and so the tests for sensitivity to changes in the various 

parameters would be very cumbersome. Actually the parameters in the 

model are those describing the orthogonal functions representing the 

gusts, the distribution functions of expansion coefficients, the ratio 

of gusts to total record, the ratio of variance of gusts to variance 

of total record, variations in the length of gusts, the points where 

the gusts are to be inserted, and the spectrum to be produced by the 

shaping process. 

2.7 Simulation Using Empirical Orthogonal Functions 

The possibility of simulating turbulence by using empirical 

orthogonal functions to represent the entire time series was in- 

vestigated by Dutton and Deaven (1971) and Smith (1971). An 

alternative approach suggested by Hirose and Kutzbach.(1969) was 

applied to a sample of nine turbulence runs each of 1024 points. 
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The approach makes it possible to obtain the eigenvalues and the 

eigenfunctions by diagonalization a 9 X 9 matrix instead of a 1024 x 

\024 matrix as required by the conventional method. Eight eigen- 

functions and corresponding expansion coefficients distributions were 

extracted and then used to simulate turbulence runs. The method ap- 

parently fails because of dependence between expansion coefficients 

and dependence between and within the eigenfunctions. 

2.8 Simulation by Manipulating Fourier Phases 

An attempt was made by Spark and Dutton (1972) to assess the 

importance of phase angle (Fourier-phases) considerations in the 

modeling of intermittent turbulence. The conclusion of the study was 

that intermittency appears to be dependent on some higher order 

association in Fourier space and that any mathematical model in Fourier 

space for intermittency would extremely involved. Nevertheless, based 

on qualitative arguments it was suggested the Fourier angles might be 

used to simulate turbulence by the following procedure: 

(1) generate a random Gaussian series, 

(2) obtain its Fourier transform and the Fourier coefficients, 

(3) form the phase angles from the coefficients, 

(4) replace the original spectrum with a smoothed -5/3 spectrum 

(5) adjust a suitable number of phase angles according to a 

preassigned schedule devised by Spark and Dutton, 

(6) use (5) to find the new Fourier coefficients and back- 

transform these to obtain the simulated turbulence. 
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Because the manipulation of the angles under step 5 essentially 

creates gustlike events in the series, this model bears strong 

resemblence to the model described in section 2.6. Unfortunately, 

it also shares with it some of the disadvantages, including the 

difficulty in assessing the sensitivity to changes in the various 

parameters. 
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3.0 THE GENERALITY OF TURBULENCE PRODUCED BY MODELS 

Empirical turbulence models of the type discussed in this report 

evidently will depend on information extracted from one or more actual 

turbulence records. Consider the case where a turbulence record mea- 

surement at 6 meters height at mean wind speed of 6m/sec has been used in 

the creation of the model, and the model turns out to work satisfactorily 

in the sense of simulating turbulence resembling actual turbulence 

occurring under the above conditions. Will it then also be possible to 

use the model to simulate turbulence as found in clear air turbulence 

with, say, a length scale of 600 meters and a mean windspeed u = 30i/sec? 

If the answer is no, the usefulness of the model will certainly be 

severely restricted. 

Fortunately, measurements in the troposphere and the stratosphere 

show that turbulence possesses in the inertial subrange a hlgh.degree 

of self-similarity 1 . Because amplitudes are related to the l/3 power of 

the wavelength, if the wavelength in a turbulence record obtained in 

the inertial subrange is expanded by a factor B, then an amplification 

of the velocity amplitudes by B l/3 would yield a record similar to 

turbulence (Dutton and Deaven, 1969). 

1) In the sense of B. Mandelbrodt's (1965) concept of self-similarity: 
A process with random variable X is self-similar if the variable Xh 
obtained by the magnification of the wavelength by h can be represented 
as a suitable magnification of the amplitude of X so that both X and 
Xh have the same probabilistic structure. 
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From above, for the first example, we have: a length scale of 

L= 6m and a velocity scale of u = 6m/sec, yielding a time scale 

T = L/U = 1 sec. 

For the second example: '; = 3Om/sec and L = 6OOm, T = 20 sec. 

Thus we have to expand the temporal scale by a factor of 20, hence 

the velocity amplitudes have to be magnified by a factor 20 l/3 . 

The Y/3 power law" is only valid in the inertial subrange where 

the spectra fall off as -5/3 in a log-log plot. In general, the 

concept of self-similarity is only useful for processes in which the 

spectra exhibit power law behavior. Unfortunately, most turbulence 

spectra in the form KS(K) have a rather flat maximum from which the 

spectra fall off towards both higher and lower numbers. 

However, for many engineering applications, it is usually the 

energy content in the inertial subrange that is of most importance, 

and so if turbulence can be simulated in this range by an appropriate 

model, then time and velocity scales can be changed as required by 

particular applications. 

Another strategy would be to assume the spectra exhibit different 

power laws, on opposite sides of a particular wave number, KM, an 

assumption which finds some support from observed turbulence. Then 

we would have 

KS(K) = &? s(K) = AK”-~ 

for 

KS(K) = BK-~ s(K) = ,,-Y-l 
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Denoting the temporal multiplication factor by B and the velocity 

factor by h, we have from Dutton and Deaven 

h=B -v/2 
K<K 

-MAX 

for 

VI2 h=B K>K 
-MAX 

where it follows that Y + 1 = 5/3 gives h = 6 l/3 . 

In this approach, we would obtain the Fourier transform of the 

simulated sequence and then all amplitudes on the side K < K 

would be adjusted by the factor appropriate for those wavenumbers 

while all amplitudes on the other side would be adjusted by the other 

factor. These adjusted amplitudes would be used in a back-transform 

to produce a series appropriate for the expanded time scale. 
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4.0 THE THEORY AND THE MODEL 

The experience'gained through the various studies mentioned in 

the previous sections emphasizes the difficulties in generating the 

correct time sequence of the empirical turbulence, even if reasonably 

chosen statistics seem to be modeled rather well. But the experience 

also showed that one way to success could be to emphasize the creation 

of gust-like events in the generated series, thus simulating the so- 

called "surprise" of real turbulence. The current model is based on 

such an approach, and the philosphy behind it is given a fuller treat- 

ment in the last section. For the present, it is sufficient to note 

that in order to find the structure of the gusts it is necessary to 

select a certain type of analysis and perform it on records of actual 

turbulence. 

Imagine the turbulence records to be composed of intervals of 

"passive turbulence" and of intervals of "active turbulence", where by 

active turbulence intervals we understand sequences of the records in 

which it is observed that a gust prevails for some specific length of 

time, T. Hypothesize further that the active turbulence is composed 

of a quasi-deterministicgust structure to which is added passive 

turbulence. We can then confine our attention to the active intervals 

because, if we can find the gust structure, and if we can find a way 

to represent the passive turbulence, we know from an analysis of the 

turbulence records how the passive and the active intervals are 

distributed in the records, and a model proposes itself: generate 

series of passive turbulence and add to it the gust structure in such 
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a way that the passive and the active intervals become distributed as 

in the actual record. 

It is shown in Section 8 that imposing certain,prin- 

ciples in. order to find the gust structure and an economical 

representation of the passive turbulence lead to the Fredholm 

equation 

integral 

I T 
R(s,t) d@ dt = xkdj$s) 

0 

where 

R(s,t) = E{f(s)f(t)) 

and f,(t) is the nth interval (tn _ _ < t < tn + T) of active turbulence 

taken out of the records and then redefined over the interval (0,T). 

The expectation operation E{ ) is performed on the ensemble of 

fn(t), n = 1,2, . . . 

The +'s are orthonormal eigenfunctions of the correlation matrix 

R(s,t) and under the assumptions stated above, $1 reveals the gust 

structure and $,, $,,.... provide us with an optimal expansion of the 

passive turbulence over intervals of length T. 

We have for an interval of active turbulence 

00 

(4.1) gAw = c a @J (t) 
kc1 kk 

and for an interval of passive turbulence 
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“0s 

(4.2) s,(t) it c a 0 (t) 
kc2 kk 

The probability density functions of the expansion coefficients 

oR are estimated from the f,'s 

I fn(t> +,b) dt 

hence the ak 's in (4.1) and (4.2) are sampled from their respective 

distributions. 

Representing the gust structure by a function that is orthogonal 

to all the functfons used in the expansion of the passive turbulence 

obviously requires that the two processes, the gust and the passive 

turbulence, be orthogonal, a requirement we only can expect to be met 

approximately. Then, because of a possible non-orthogonality between 

gust and passive turbulence, we would expect $1 to give most of the 

gust structure plus a little of the passive turbulence, 9, some of the 

gust and more of the passive turbulence, and so on. To account for 

this in a generating scheme, one approach would be to use all the 4's 

to construct all sequences of the turbulence, but to diminish the 

amplitudes of the first eigenfunctions approximately in the intervals 

with passive turbulence, for example by transforming the probability 

density functions for the expansion coefficients. 

4.1 The Model 

The discussion above proposes that the model be established in 

two parts: an analysis scheme and a generating scheme. Thus, the first 

scheme describes how to obtain the eigenfunctions and the second scheme 

how to use them. 
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The steps in carrying out the computation are: 

Al Select one or more observed turbulence records. 

A2 Select a characteristic feature in the records believed to be 

of importance for the intermittency of the turbulence and select the 

corresponding time interval, T. (Such a fea-zure may be a large gust.) 

A3 Extract as many as possible time intervals containing the 

feature in order to construct a representative ensemble fn(t). Estimate 

the probability density function for the time interval between the 

occurence of the feature. 

A4 Subject the ensemble to a Proper Orthogonal Decomposition to 

obtain eigenfunctions and expansion coefficients and estimate the 

appropriate probability density functions of the coefficients. 

The generating scheme 

Because the eigenfunctions are defined on a fixed interval, it is 

necessary to generate the turbulence in multiples of this interval. 

From A3 we know the distribution of the time intervals between the 

events, and we can then pick values from such a distribution to determine 

where in the generated series the special events shall occur. From the 

appearance of the eigenfunctions, one can estimate how much active 

turbulence and how much passive turbulence the first few eigenfunctions 

explain. According to this estimate the weight of these eigenfunctions 

is diminished in the passive intervals. 

The generating scheme then becomes: 

Gl Generate a set of random numbers, using the probability 

density functions from A3, to establish the sequence of intervals of 

active and passive turbulence. 
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62 Generate the active intervals by sampling the expansion 

coefficients from their probability density functions (from A4) and 

multiply the respective expansion coefficients and eigenfunctions and 

add the functions together. 

63 Generate the passive intervals as above, but make appropriate 

transformations of-the first few probability .density functions, 

and if necessary, 

64 Obtain the Fourier-Transform, let the phases be unchanged, but 

1. Change the amplitudes such that the ene,rgy spectrum is 
: 

proportional to the -5/3 power of the frequency over a certain range 

(see Section 7). 

2. Obtain the appropriate time and length scales by multiplying 

the amplitudes by a constant which has been determined in accordance 

with Section 3. 

Then back transform to the time domain. 
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5.0 CONSTRUCTION OF THE MODEL 

The ensemble f,(t) was selected from a turbulence record that 

will be described in the next section. It is composed of 0.10 second 

block-averaged values of the u,v, and w components; the.total length 

of the record is 50 minutes. 

The selection of the ensemble f,(t) was then done heuristically 

in the following way: 

1. T was chosen to be 5 set (=50 data points) 

2. The record was divided into 100 segments, each of the length 

30 set I=300 data points) 

3. Inside each segment, the maximum value of w was found and a 

5 second interval of data centered around this value was picked for all 

the components 

4. The mth ensenble function f m' was then obtained from the mth 

segment for 12 m 5 100, and the function was constructed by patching 

together the u,v, and w components (150 data points) sequentially. 

The occurence statistics were then very simple, and a gust interval 

of 5 seconds duration was placed at random inside each sequence of 30 

seconds length. 

The numerical approximation of (4.3) becomes 

(5.1) CR(s,t)d$) =, $.$,(s> 

which is the usual eigenvector equation used in Principal component 

analysis. 

We have 
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R(s,t) y $ c, F;(s) F,(t) 

where T denotes transpose and Fm is a 1 X M and Fz a M x 1 matrix. 

The matrix Fm has the following structure 

F,(t) = 
kJmcl>, UmW.” 9 Um(50), Vm(l), vm(2)."'~vm(50), 

Wm(l), W,(2), l ** , Wm(50) 1 

which gives R(s,t) the structure 

uuuvuw 

[ I 

VUWVW 

wuwvww 

where, for example,W is the 50 x 50 uv correlation matrix. 

A more straightforward way to perform the analysis would be to 

create three ensembles, one for each of the components, u, v, and w, 

and then get three sets of eigenfunctions by solving (5.1) for 

R(s,t) = UW, W, andWW respectively. But then we would have disregarded 

all cross statistical information, and it would be difficult to intro- 

duce it into the analysis later. 

The way the eigenfunctions are constructed in this analysis by 

patching together u, w, and w enables us to use all the second order 

cross statistical information available to construct the eigenfunctions. 

The function (p,(t) would then give the most likely simultaneous occurence 

of u, v, and w during a gust in w. 

The patching of ensemble functions has been used by Jaspersen 

(1971) to analysis vertical profiles of meteorological variables. 
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5.1 The Eigenvalue Spectrum.and the Eigenfunctions - _ ;L_~ __ ..- 

A diagonalization was performed on the 150 X 150 matrix, 

R(s,t), giving the eigenvalue spectrum shown in Table 2 and the 150 

eigenfunctions of which the first 14 are shown in Figure (5.1) and the 

first 20 are listed in Table 3. 

The first two eigenfunctions seem to explain the average values 

of u, w, and w during the "gust", and it is not surprising that this 

is the most highly cross-correlated feature. We could have prepared 

the ensemble from which the eigenfunctions were calculated in such a 

way that the mean of u, v, and w was zero in eac,h ensemble function, 

or we could have removed the ensemble mean from each ensemble function. 

In both cases we would then have to carry some additional statistical 

information in the model which can be carried by the eigenfunctions 

and the expansion coefficient distributions themselves. 

The third eigenfunction is mostly devoted to the peak in w, and 

to a lesser degree so are the fourth and fifth eigenfunctions. 

Fig. (5.1) reveals how the eigenfunctions, as the number increases, 

tend to explain features on a smaller scale. 

Table 2 shows that 72% of the total variance in the ensemble is 

explained by the first 5 eigenfunctions, 82% by the first 10, and 91% 

by the first 20. In the final generation scheme, the first 20 eigen- 

functions were applied. 

Because only 100 ensemble functions were used to create the 150 x 150 

matrix R(s,t), the actual order is 99, and only 99 non-zero eigenvalues 

can be calculated. This creates some interdependency between the 

eigenfunctions. However, the appearance of some degree of dependence 

does not seriously compromise the method. 
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Figure 5.1 First 14 eigenfunctions. Points l-50 are the u-component, 
points 51-100 the v-component, and points 101-151 the w-component. 



TABLE 2 

EXPANSION STATISTICS FOR THE FIRST ?O EIGENFUNCTIONS 

Eigenfct. Expansion cotiff. EigenTialties 

Nr. Mean Stand. dev. % Acetim; % 

I 

2 

3 .' 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

. 15 

16 

17 

18 

19 

20 

-1.72 

1.39 

3.39 

0.96 

0.83 

-0.22 

0.17 

-0.06 

-0.09 

0.21 

0 

6.63 

6.28 

2.92 

3.15 

2.29 

2.21 

2.00 

1.91 

1.70 

1.63 

47.0 

41.4 

20.0 

10.8 

5.95 

4.92 

3.98 

3.67 

2.89 

2.69 

2.26 

2.20 

2.03 

1.68 

1.56 

1.46 

1.26 

1.19 

1.08 

1.04 

27.0 27.0 

23.8 50.7 

11.5 62.2 

6.2 68.4 

3.4 71.8 

2.8 74.7 

2.3 76.9 

2.1 79.0 

1.7 80.7 

1.5 82.2 

1.3 83.5 

1.3 84.8 

1.2 86.0 

1.0 86.9 

0.9 87.8 

0.8 88.7 

0.7 89.4 

0.7 90.1 

0.6 90.7 

0.6 91.3 
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TABLE 3 - LISTING OF THE FIRST 20 EIGENmRJCTIONS 

EXGENFUNCTIUWS 1 - 101 POINTS 101 e' 150 I THE. iJ COf4PONENT 

1 2 3 0 5 b 7 8 9 1Q 

-0.04206 
+O,oci081 
qO,Qii703 
*0,03543 
rO,035b9 
r0,03065 
*0,03531 
r0,03729 
4,03315 
*0,03B98 
-Ofi of226 
-0,04470 
rO*Or(ll9 
10,05724, 
..O,OQR2d 
-0,oB747 
sd.OUl90 
~0,03003 
l n,of91u 
~0~02324 
-0.02599 
rO,03628 
~0,03fl3b 
~O,Oii400 
,O@Oii'liiU 
~0,09402 
-o,oti77 
r0,05552 
-il,Ob373 
-0.04609 
-O10fRb8 
4~0il100 
so, ObbW 
~o*n5133 
PO,05076 
rO.06192 
-0,0&132 
*0*05577 
eO.Obb20 
dJ,Obl9i 
-o,oir793 
30.03735 
ri)?n3416 
-(1,0327S 
r0*04333 
-0,fiSbRD 
-Oa0E35H 
roe04834 
-0,0~762 
-0,02rirc 

*0,07741 

0,04389 00~02797 -0,OH'jBl -ficno4b3 sOalB030 
O~OYi~O -n,O2414 -O+ 12440 -Or04763 -0,1137b 

0,19475 s0,1S006 0,0~910 0,0022u 

lJ;t'3728 de02649 -n,l2!06 -0.nt3169 eO,lln44 
0.20585 ~0117187 O,lJUBi! cO,b8762 

0.~3181 -0.01783 -O,JUS62 -fl,135i)5, -On1244d 
Oe2261b *Oc20U51 0,07148 ~0,07456 

;dJ;J;;, -O;O207U -0,ZU'fllb -0,16944 -On09795 
0,24876 r?O,l8648 n,o+63 r0,04762 
0,2OO~a 

0:02330 0.00547 O.Oa5ol 
O,i)16vR 

-0,13323 -n*14107 
-0, 15541 

-oe149b3 r0*14B73 rO,03332 10,03103 

-0,18632 rOg0153tl -0,04336 

Oq15961 0.19717 -0,15749 
-0.00723 

OecJlS98 
-0,11165 -0,06506 

10,OlbBl OcO~207 ~0,01444 O*OOLiSti 
0,10041 

O,OO937 
O,iil2ci9 

-0,200Rb -Olln016 de12318 
-0,08936 ~0,00897 

0105649 
0.01624 -O,lR‘f86 l oeonoJb -O,lbj4B 

-0,03765, 
-0.09484 
rO,OJ$99 

0.13964 
ORi 

0,05509 o,obo43 -0,1q717 0~13249 
O,ti2259 -0,00139 -0,14~6I1 c0,0932R -0,12Q4d d,i)07RO 
aRti -O,lli?tP -Oe0b4b(i -0,11473 

0,04969 Oq09698 
O,o&?fifb O,OEBOS 

-Qll~441 
-0.05921 0,03403 a,01994 -0,13702 rO,l(ll78 0,12;276;- -0.14827 

0,024i7 

-O.ilb330 -0,09598 

O,Olb75 -n,13657 -O,Ob202 ~0~07455 -iI, 
0,00654 rO*1(1193 Oc1220f 

0*02ont O,nn25n 
0,02609 -0;08035 ~I,[)9553 

0,01477 
-0,!4097 -nr03094 r0,12b71) rOi20989 ~0,01728 ~0~02754 0.07975 

-0.005u0 -0 .13932 
O,O273R Q,O1973 -0,$8626 

0.0110~ 4,100AIi -0*17647 ~0~02024 0,03502 0,67445. 

o,d3651 
o,O2Uib -O,lj26% -!),14657 ~0,03500 

O,OU513 -0,15slO 0~r-14619 -0.10466 -0,13bbn ~0~06051 
O,id122. O,tibt65 

OeOIRBi -0.08477 
0,08827 

;a;;; -0,12474 -0.22298 -O,Ori703 Oel!3U3 
O,iO674 

0,05hb9 0,04903 
I).Ob973 -0,115lO 

o:i)Bm o;ll7el rO.12141 
Op04623 l O,OBSS? ~0~~0068 *Ocfi667f O,lUlt4 0,60397 

0;04732 
OeOllb6 -0,00022 -0,17554 0,26154 

O,lb444 
O,bSbHb 

-0,12159 -n,oo252 O,nOOb$ 
eO,lZB1'3 O,OoYL13 

a.18183 -O,t?b?FiB o,olub’j 
rO,lb@b -0,17291 0,2b463 0*0076i) 

O~i)5902 
R,OU940 -0,16356 rO,14064 0,15665 010536$ 

o,n7661 
0,2U642 co,03696 Or04601 O.OS3li O,QOSbB -OF11573 0.18844 O,i)7625 
0,33675 

OeO9857 
0,ObZOb na13729'-OdOlnZ? 0,106S9 
0,17!45 or30385 d,ln615 

-0,08119 0.03728 Oq09279 
0.50081 

O,BBJ8U nc12R25'-On06839 
0~17679 -0*03966 rOp05t326 Oc21S2t 

0167158 
0.31521 0,12002 
0.16737 n,o3343 -n~o21lb -010849Z 

O.il482 ll,O8750 rQcOb038 0,09310 
Q,OO7b4 

Og06ib9 
0,18096 -0,123bB rO103i)0t 

0.14509 rfi,02709 -n.i)3691) d,ob446 o,on823 O,llbSB -0.16599 -0,68999 
a,03594 il.14624 -0,02670 -O.Q71ir2 -0,03R72 O,OOSlb 
n,buGia 

0,14db7 roe13519 +0,00975 
0.04137 0,13508 -0~09319 *o@il692 

oqti427u 
O,lU897 -0,OZHbR -or0195.7 -o,ozssh 
l),llBSP -0,060X6 -0,01204 

Oe03?22 0,13155 r0,052b3 rn,04bAO 
ct.03643 -0.03757 o,n5377 so,070ib r0,i2204 
n,otibB -n,o778i 0*03032 -0,09U39 roe11369 

oens453 O.09698 
oc04241 

-0.08474 -0.12999 0,10268 -Oe0454n 
0,lUOlY -0,07145 

On03782 eO,098i6 ao109h86 
0103059 0100367 eOI04f26 

Orti3A4b 
n,o8996 -0,08~5U -opl1661 
0,09272 -0,0917U roe13449 0.19044 -0.02181 

O,OZBlB -0.13872 0*25737 
-0,01298 O,Ofr520 -0160838 

O.Ohbfi3 -0,Ob~lO -n,?42U9 0,00599 o*O?b92 0.00732 
0,03075 
OR06'i0a 

0,OB5lb r0103320 rOc12680 0,26244 0~02164 0,071lb 0,0!7ia eOli16Y9 
n,ll209 -n,O7Sli ~oclo~f+~ 0,181ni -0;00313 0.06551 nc12372 

0,045Ub 
~0~09897 

0.10604 -n,OYf39 -Owl3220 0,13255 
0*04'178 a,09115 -0,02flS -6*09404 

OeOO482 0,10830 o,li302 ~0~09997 

o.ci3851 0,032S3 -Orl176fi 
1~~19719 0;02228 o,o7ina 0.03773 e0,i06i0 

0,0bSYl 0.12ROb 0,03409 
o;auii54- L),Ob947 

0,0256b 0,,09192 (rOc0513y 
0,02!45 -O11392b 0.03479 

o,fj3H_50 
O,OS272 O,(rlQlO 0,0!256 ~a,04703 

0.0431.5 O,ObS12 DO,13930 O"O7750 n,o208t a,02411 0,10115 cOqi)614i 
G?O2138 O,Oh3RO n,048b9 -OIlhi? O,ObS3h 0,00303 o,o2126 go,,03573 
0,02?$3 

0,03A05 
0,07114b 0,059lE roe17244 -0,03749 0~0619~ 

0.02f23 U.05452 0,0522J -Or21742 -0,02139 -u,i)oSOn 
0,01892 eo,Q3258 rO,QB743 

o,c,2h20 
0,01750 -o"oB941 *o,i)5372 

o,lISfr92 
O,OlBhY 

u,n2!23 -n.lR56.3 0,032Oi -0.04456 0.04827 -0.11165 co,03969 
0.04071 

O"O2WS 
O,fl33Rb -0.17822 0,013R9 -Op09210 -0,06513 sO,i)o726 

0.02220 
0,07502 

0,0179H -oFI o,n5043 
0;05976 

-0,06935 o,n3040 l 0,09305 
0.0~4~~ -0,05637 -0.0979n -n,o5l96 -0.ion2~ -0,nllsbs -n,oasoo 

00,01299 
Oe03746 



I- 

189 

TABLE 3 - LISTING OF THE FIRST 20 EIGENFUNCTIONS (continued) 

~IGEN~uNCTIDNS 11 - 201 PmNts 1 F SD I THE u COMPONENT 

EIBENPUNCTION 

11 12 13 14 1s lb, 17 18 19, 20 
Og0374b 0.01031 

-O,Oij43S -0,~~!)~~3 
-f),O5298 rQ,Ob590 -O.O4472 0,O5953 *0,1050l rrOc03323 sop1(1053. 0,022tO 
-O,Qb376 -O,iO?OU~ -0,04699~ 0,02975, +prU&31i2 d,Of52!$ qO,li389 O,p129'j 

O,OlbOB O?OlBH3 -0.07415 -OcOR<31 -O,OB090 
g,od439 O"O2ciil ~O,O7Oidl 

O,O304ij -a;tie794 -0pO~O41 -n,o6453 

eQ,02420 dcblti51 -0 
-0,06$63 -0.OR710 

0,02+9. 
o,n439'! -!j,i)V231 ~0~06306 ro,oiii95 0,0509i. 

,074hA -O,i)U370 -0,0427'f, 0,04248 
-?,02+2 10.0447) -0,05892 ~0,0292R 0;00446 Oq02815' 

'0191053 *Os08716,r0,0iij62 o&l&S. 

D.01000 
d,boe5a.~o,ostse~ rOq05433 O~OS305' 

-0,03701 
0,06589 dc(i6322. 

-0,06614 -O,OlS94 
-0,00767 

0,01993 0,021s3 
-0,06208 0~02940 

0,001d2~-0*~5226; -0,02257 tJ,g?-2s 

0.00273 -0.tiSii42 -0.06944 -O,bO859 0.02714 Be09904 
O,OIlS37 
0.02256 

O.i)2417. -0,041SB O.Oi296 o,OSA~li 
l 0,01333 -0,01036 -0.07385 0,0;67Q O,O9OPR sObOIYl7 6162434 01#5206, 

*OcOlU53 -O,02389 -O,ObZbP OF02775 O,OS9SS ~0~02352 

to;02239 Q9~5i12 aq04225 +Q,u017& 0,?22!30, 

lO,OiSl6 -0~OOLoR -O,05142 
0.00657 ~0.00718 O,OiiSiB 0,003U4 

0.02845 
-0.Od275 b.Ojfi52 

0~02~05 -0,02854 
WI,01772 

Ot035B7 
0,05782 0.04657 -0,044Bi 

O,i)3126 -0101733 
fJ;b5566 De00653 

O10i030 OcO0775. 
0.03840 

-0.02563 -0,05625 
4,042!10 

-0,0042B 0,06575, 0.05445 
-0.03542 0,@2bhS 

O,i)40iR O,OJ877 0,0~7d4 ro1001u3 
0.03225 

-0*03143 fl,Oliici5 
0,03'346 

O.OS'l3h n,a4n!3 
0.05278 -O,OUU2$ 0.01563 OS04369 0,076dy 0,OlfOJ 
0.01975 -O,oa385 co*03397 

-0,@506h 
0102836 -0.01525 +0,11R52 !I,06571 0.04447 0.01023 OeO!'3U3 0.01572 

-O,O2438 0.05134 0.03299 0,017RR 

-0.02082 0,05979 

-0102iY7 -O,ObR26 

sO,g0724 O,t?2603 

-0.03247 0.06409 0.07072 0.03422 -O.OU964 
*a,oi707 rt.olleo 

-0,0462i 
O,Doebtl O"04149 0.03096 n0102038 

-0.02444 0,Ob094 0.03775 so~oS185 
0.07472 OsOi516 

~0,07113 0,1)13RH 
(!,OStiRU -OeOBBll -O,O7008 -O,O2069 0,08591 a0,07695 

0.07540 0,037Y2 -0~11230 ~0,050A~ 
-0,00609 0.01524 -0.122tib 
-o,li777 

0,07527 -0,01427 
-0.0948& 

0,00213 
-0,0362O 0.13771 OF04036 

0,0983S 
~Oe09011 

-0.6323~ 
~0,040tB 0,18394 *Og09256 

-OF06i17b 
0,08256 -O,Chi!S2 0,032oii (I,00772 

10.1627U O.llSZb -O.O5782 -0.03959 0.06154 
O.lYS66 rO.00612 eO@87492. 

r0106223 
-0110425 -0,iOi~R'i 0,11144 vO,08’713 -0.03549 

0,02929 0,OSSYP rO,(r4566, 

-O,O5350 -as09233 
0,0641! 0,01589 0,OUbLt ~0.04937 rOetj396tl 

0.06832 -O,llb99 0.00683 0,077Rl 0,00619 O,OOYl35 ~O"O8540 ~o.oeaeii 
-O10U512 -0,10315 0,03959 -0,14175 O.Ohlh4 0,06486 0.00786 -0,02963 -0,07228 eO,b28Ub 
-0~03411 -OrlG~ba 0.03713 -O,i5799 O,llbY5 0,10295 lo,OU906 0~01~7VS 
-0.Ob402 -0.1497J 

0,02720 10,02593 
-0.00226 -0.15032 0.12611 0,09845 

0*06266 -Or14676 G.Ofi442 -O,106hR 0,11333 
-0,05307 

fl103Y5b 
0100939 -0,03b7i -0.04620 

-0,0599'i 
O,(rO867 -0,04179 -0~06eul 

oey902 
0,08952 

0.07288 -O.l2bb(r 3.01179 O.OA901 O+O3456 -Oe1103U -0.05436 Or14692 
0,0Y163 -0.(l5i'jbi -0,0!84LJ -0.04033 
O~lSObO -0.015d4 

O.lO31A -!I,10504 0,069.35 -cl,13886 rO*03774 
0,01720 PO.00705 0.07171 -0,11520 

-II,30533 
O.ObBE)~ -0*13876 -0.05661 

0,155ua 
QqO8077 

0,lbVbG 0 e i) 1 A b 1 0.02876 0.0389U 0.02724 
0.07752 -0,OBBsi 

0,00686 -Ocl1636 -0,070OO 0.06944 
Op 14875 Or05641i 0.01377 -0,0137b -0.01.630 ~0~02632 
0*14220 Or059hS O,O3454 
0,04532 

t-1,04767 -0~03Bh7 rO,O95.S6 -0q04348 10,02924 
-Oc06169 0,09037 

0,01656 0,065OS 
OrOh 0.02222 rO,o4165 

0~01034 tico4H92 
0,03873 -0,0775$ rO,(iO274 0,01668 OS02212 0,02997 

o.ol3ni 0.03bUS -OqO0951 -0,020HO -OcO2424 d,OO526 Q*OS537 0.00202 
0~0755? O,OljSQb 0,03979 n,ou~16 -0,040tI4 OI0215! -0q02555 a,01999 0*07665 0,01552 
O"097Sb O?lUb9?ti 0.03935 -0cOh004 0,06292 0108875 
0,16863 

~Q.OB5Oo -0,03688 0.00722 
0,08IB9 

0,03!62 
(J.OhSO7 0,07469 -0,0665b O,Oh2Yi' a!,07352 eO,OlO.$7 0.07748 rO,OlOlS 

OplOlOb O.rlRl25 ~I,OSUY9 0,07736 -0,04L392 O@lObU2 -0,00587 0,04680 0.07916 o,(io873 
0,05v57 0*05it74- 0.0t7u5 0,02e9b -Oe03011 

Oeo7176 -0,022Rh 
0,06025 

0,d1h!ia 
gc02194 0,06576 0.05341 oc0054b 

Oeo27Ul f,.OOSOO 0,02bO3 0r03936 0,03l65 -0.02324 op01971 
-O,O0341 -O103R2B -0.05288 0,05211 -0.00265 0*02952 0,00711 
-on035t)7 -!)*U'/?57 -a,07695 O.OrjniS 9,015SO. O,o293$ 

0,06858 sr),lUUBS r0,00928 

0,04420 01030b9 
0,03385 0,05177 .roz07633 -OeO1550 

-010h495 rOe04b03 rO,OYR63 
-0~09049 -O*O'ljbH -0*OhJh9 

O,Ohl45 0,i)bU29 -OF00750 ~0~04485 -0,03215~ 

-o,OH301 -0+04907 -0.05933 
a,Oh17U 0,032OU 0,0254~ 0,0366! 

0,03448 
-0,00175 0~00047 Ioei5tmb 

rOe2179i) 
-Or07636 rO105314 

0,07893 -0,012I~ Oq05033 -0,014lb -0,oOOfO 
-0,05424 0,06Lir2 O.OOY24 -O,OlY71 0.0557B 0,02764- ~0,02089 10.23445 
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TABLE 3 - LISTING OF THE FIRS,T 20 EIGEXFUNCTIONS (continued) 

EIGkNFhNtTXmis 1 - IO, POINT3 s I -' 100 I THE V CDMPOHENT 

EIGENFUNCTIUN 

1 2 3 4 5 6 7 B 9 10 

-CrC7b00 ~0.09YUV C.Ol143 rC,64dCb 0~6746B o,ow937 
-0,07i!O4 -O,IC!AUu O,ON545~ il,lnosb 

0+63633 -6.68516 eC,OB512 rOt63616 
!J.!li5CS -n.C4'/H9 

-0.0bh55 -oEi0Gt,7 0.0%31!3 -O,C%USR O,ORh92 O,66913 
6*03138 -t-J.66131 -o*n7121 -C*O1966 
0,054Uf -6,6Y645 -O*O’ISY7 ea,a3lle 

-O,nhJ3Mo -Q,11125 o.C16:34 -O,Ol!Li,~O 0.0a42li 
-0.0764l -O..IlOb;! 

6,oh09b 
(i.rl185h 

0,05933 *6,69214 -0,67873 ?6*63996 
-0.Clb33 0.07526 

-CcC76M2 -r,.l6cJsP 
6,65405 O.C5592 -6,69427 rO,ob701 -C,65194 

(r.ci)nhcl -0.021325 0*66798 6,0778)6 
-Cc07795 -l~.Ao~5c; 

6.64836 00~11796 -Cl06664 -0,05631 
O.Ol203 -lI,Cl492 npn74an 

-CeC771h -0.lCbQ1 
O,l?BObQ 0,039SB -0,12597 -6.64867 1oe6338'/ 

;i . iJ i (! 7 fJ - 0 . (! 1 1 i? II O.OCibbH C,685A4 6,0269j -0,69492 -6.C5020 r606470~ 
-6~07765 -6.16157 6.60913 O,UOO2 j C,CUY93 O.OBH69 
-O,nB298 -0,16S64 ll,OSC,05 U.C7084 

6.64096 -0,678S3 -6*C3351 -6964157 

-0.CH425 -O.lO!JS!, 
O.C6325 -o,u1rs3 

t-l104939 
O.bl389 sCgi6210 -o,oi(235 -6,C3442 

U,CC3OH -C,C2490 O,C87CH 
rOeOR -0.10796 -U,r,f,215 -0.02764 

0,0069C -0,69406 -C,C6432 eO,O2599 
O,03505 

-O,1~bSSO -0*1694b 
C,C7332 -U.U65b7 -C,lCC47 -6,a6ntlU -0.02637 

O.OChl36 
-U,Ob579 -O*lltiG7 

-C,OlR‘trr 0.0271U U,nH247 -ClCCSS2 -O,l6223 -6.67756 -a,62221 
U.OOUO5 -O,Of54U 0,02909 

-O,U8673 -0,110Au -1'!.lrO239 -0.0242R 
C,O8375 -O,C2953 ~0,69650 ?6,07arCJ Ce60520 

-6pOciS71 -6.1 IdOR 
Cc039Hh 6.10622 -6.62545 -O.O5!57b -~oOBOl~ 6,015;64 

6.1!6013 -U.O356U ‘C.0432H C.10933 -C,C2663 -0,04640 -6,lOYOb U,O2331 
-0,Ot)485 -iI, -(!,fiOOH8 -0,042HR C,C32U7 0;685C3 -C,C2714 -C,C4345 -0,12389 
-CaOt)94C -Or11471 -lJ,CO303 -Up05216 

C,C4189 
C,6303tJ U.G7268 -0.65529 -ire06697 -ne122Y2 U,66664 

:0,69255 so,116’~2 -0.OC2Sh -0.056hl 
~C"CRRO4 -6~LlLiJ4 

C,007H4 6,OH121 -0"04815 -0.04319 -O,lC829 
0.613b7 -fl.o074;i 

U,C5742 
C,oo26b 

-O,OR9SR -6,12079 
O,C/Y23 -C,O3812 -0.0517S -C.C9016 0#60971 

Li,glfYeA -c.oulh? -0.110208 C,C7h53 -0,02952 -0.n3939 -0.Cb727 0.10382 
-0,091ll -0.12bSB n,llls13 -O,lJlY69 -0.Q2UhO 
-6eO8353 -6.12b29 

O,C6653 -6,02578 -1~~60529 -6.03242 0969199 
0,~072C -0.01335 -C.C1254 0,033/Y -O.O3tt7l! C,C3!23 -O,CC922 0.09121 

-0~08157 -(r,i2j5s C.Q6888 -0.Clti50 -0.626Cfi a,oonSb -6*04879 OcCh19S -0.66363 OzC76t32 
-C,O8795 -cJ,i2949 O.Cl765 .0,0!54P -C.f?54'l3 -6,03RO0 -0,62293 6c08345 OF61666 C,0754B 
-0.68657 -0!12tilY -U.1?1019 -n.C1467 -n.o~232 -a,03499 C,CC461 O1095B6 0.63369 0,06826 
-0~OtJS311 -0.il727 -fJ,6126C -0.01577 -0.04513 -0,63387 U.00523 
-0~063~4 r6,il476 

O,C6766 -C,OiO61 0*040Ob 

-0qO7834 -O,lf919 
(r,OOJS9 -6,01735 -C.C57lh -0,0157?, -n,O!878 CIo6919 -o101382 C,O3782 
\J.O0064 -C,OOO70 -0,06458 -C,C3037 -0.62686 0,069Ctl 0.06347 OtG3729 

-0,07788 -G,12ii>S -O.OOnoS 0.61170 -0.04244 -0,OOfiHir -U,fl2317 0,04850 C,O2323 Of1621b0 
-0.07638 -0.1227b i),OC139 n-n2177 -npOJ59tJ -O,Oh39H -fi,63100 0,03566 OcC4521 -0.61563 
-O*Ot)VYR -O,ilH37 -(',60].5Y 6.03336 -0,03173 -O,C7t)3L; -0,030SC 
-0,nhQol -o,iliio -C.OClH7 6*0236b -nraOAU6 -0,OH195 -IJ,fIlltie 

C,C2276 O,C7204 -0+OCH45 
0.62576 0.10159 -0.0102'7 

-0,612bS -(;,ilb29 C,C(JR97 0,017Ul -1-1~00416 -0,OBi’ll -0,64627 6.63429 6.lir344 -0,02547 
-C,67289 eoeili36 -6r06115 0,01335 Or0124fi -0,6917b -6.63H26 
rOc010H9 -c,1134t; -C.00292 0,015tJo C10/07'1 -0,lObCb -~~051'56 

oI05412 0.13364 -0,02496 
0.05674 O.lis812 -C*C1434 

-C107207 rGr116Gb -D.l,OhSh 6.6lY69 6,1\!153 -u.o947s -O.i)4BRU 0,6/472 0,12276 -0~01142 
-6,071hh -O*l2392 -lJ.C083S C.OlS9R C.01367 -6,CbfHh -0.05189 
-o,o7.5a1 -O*i24J.i: -o,on2413 0.02457 -6,OoY31' -rJ.O12Jb 

6,UY184 O,I)ylOi? -Oq061t4 
U.OOB57 

C,C23Bh -0,085si -C.U05(J6 
C,jO649 
O,li)177 

Oc1029J -Oe06703 
-rJ,n7354 LO~llti7li 0 l 0 6ci P 7 I!,OOhfJh 6.1lS37 -6.663Oi 
-0qO631.4 -6.16S9tr O,C2h23 0 . P 0 ir 2 fi O.ll1113 -6,64964 0.64ll)l 6,116OB 6.07919 -O*C5?39 
-6,072io -C,lnS55 O,Oi?Q55 -o,on337 -6,Ol222 -0,64796 6,652;19 6,12026 6.67513 -0.67473 
-6,67l37R -fi*lOCb9 iJ,623b2 -C,UC529 -0,024W7 -C,C47C1 O~Oh427 O.lCCSh 6*09149 -0,07256 
-CcC793') -i?.105(Jh n,Ua2'0 n,oa620 -O,c!2StiA -O,O?'!uO O.C5738 C.CB451 0.09268 -o*a7681 
-01U761U -0plOY45 O.U87B'j 6.02072 -rl*noHsH -n,o7nau C.C7583 0.07386 0.0919I -C.C4d5d 
-0.08~55 -Cc11651 6.62600 tJ,02USZ -Cr004YR -o,onsee U.07S29 C.Ch117 0.06183 -U.Q2c?I5 
*O,Cj485 -0,iJHIIR fi,Ufh9n 

C.Ul87tJ 
0,06fiC4 -n.fJllYt -fl,CH721 O.~)J316fJ U.06837 OcC7bb4 -0.029bB 

-a@07346 -0F123lS l).lJl~i?,l -o.C2:567 -C,07h75 ~J~OR2bS rJ.f~s811 O.Ub345 Oc06Y6j 
-C,C7689 -0,!2!5b U.02366 fl,OC754 -0.01447 -O*rJf~HO~ 6.CS956 C.Cb113 0.02729 !) , 0 II H 4 0 
-0.67313 -6,llbHO \J,C3202 O"O14b5 -n.o1271 -C,n5483 6.67677 C,C5149 0.04233 0.0~002 
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TABLE 3 - LISTING OF THE FIRST 20 EIGENFUNCTIONS (continued) 

EIGEAFlIkCTION 

11 12 13 14 1s 16 17 lc) 19 20 

O,OSb~B ~o.?3221 -0.02521 -0.!3979 fl.04238 
0,0$32Q aO,U073B -u,005h7 +0;342ats 

0,02371 -0,03OOS- 0,00472 0*04154 OF01141 
DtO’lb17 n,ObS57 -0,02942 0,02092 0,01356 -0*04162 

n;a!ais;! -0,03yos 
0.0697i 

o,n2219 -Oz137H3 O,O3!#15 O*ORlSfj 0.02421 o,ov733 a,02345 ?0,03354 
0,00172 0,01144 -G,l3624 o,O0622. Q,07hR3 0.03872 

OrO~0bl 
u,o94sfJ -n,n1912 -0.00746 

O,ClOSYj 0,02020 -a,llb74 0*02933 0,06R01 0,02446 
0,()24ij4 an,iili.IOs IleO -0,041jb 

0,09594. rO,Q34S2 -0.05353 
0,07557 eoe036n2 -0+0598f 

Onu26b4 -0,027S9 
O,OO421 -0,14~1)3 1~~00290 

o,oi494 *0,05509 
u.00095 -0,104oo -Or03389 
o.oa2e3 -0,072Sl -a.~nsu~i 

O,O27ot -0,042OO 
0,02513 -~l.(ll74R 

O,O5622. O,Oi?Q41 e‘I,O3t22 
o,o1647 -a+01940 -n,Oo3B2 

aq02307 rO#U6746 
n,oi233 r0,~9&i~ 

0.QJ434 rGcC5409 ~1,Ooo85 ~:,nOBO'! (reO08ti3 O,od727 o,oi:396 OfLi3i61 

-o,OOO62 -t~~OHbiltI 
ti,03BY7 -o,osii53 IT.01102 r0,0044! -0,04376 O,OriS86 Oc028h2 0*0133? 
0.03400 -0.01779 0,03291 -0.01391 -0.02906 ~0.01011 OqOh7SO 0,O2324 

O,OO762 -OqOSYr)7 U,O3472 -0,OllZb -0,OO55$ -O,O5b53 gOtO -UFO4293 O"OO559 o,olbti 
0,03813 -O,OZtJ45 0.01679 O,O1721 -O,U3466 e01089nil -0~0~520 -0,03304 oaoo913 
0.04297 -o,Ul‘flS 0.02313 0,03619 rO,03461 -0,nBOl~ 

O,OlOll 
u.oo14r 

0.05542 O.O2223 -O,OW3~ 
-oIOs179 O,OOb03 O.(i3H91 

9102492 0~00531 O.0500H 0.02456 -0,03136 -0.00695 0.04002 
o.ol223 oroldBb 0,01867 0,08276 0102502 -0,0828i 0.049~0 -0,05767 -o.oioe3 n, 02385 
0.02571) ngo2994 O.37332 0,07250 -o,n35n9 -O,l348/ O*nOe69 -a,04250 -0.04375 Oci)2i19 
i),00131 O.(jbL)t)Y Q,06515 0,09r(l9 -0?064Q!a -C.t5082 -O,O2412 -n,U6225 r0.1-15486 OtO0529 

a0.02767 0lO794/ 0.01470 O.G966lr -0,a5H41 r0,133ll -0.02’/42 -0,05346 -o,Ol326 n,ooo46 
c0.03hSY rl,O7dO5 

0,064bl 
O,\IOUS5 O,lOC!i4 -O.O6lF;7 -0,15579 -0.01366 -0.04761 -0.02691 -Qc0422“1 

r0,01423 -O,o3287 0,012UB -0.0170s O.06263 -Oq05782 
o,no81~ ll,bAQ4P -1~*06VO7 

0,1lB7L1 -0.n495Z -O,l372? 
OcORf2b ~O.Ql762 -0206570 -O,00829 ne00009 

O#OJS14 
rQ,OdS!57 

Om03821 -0,06153 
0,00856 -0,n2USl 
n,oZlSB ~n,O7U42 0cO3LSl 

O,ilO94l) -0*06731 
;ey;:;; O,o7749 -0,03601 -o,ol458 

n,d3'3'S2 -0,OBQB7 0:14ls9 
n.12os9 0,02Gl6 -ii,01465 

Uq06R4i 
O,OB216 -ileo O+O764? 

-O,01126 O.13HSh Ut0Y130 O,l263S ~(I,09522 Omi19424 
a,oSh26 
0.02295 

0.04596 -o,QS2U8 0,12490 n.16224 0,1103b 0,O06B9 n,i3k353 -0.05606 n*n4B4i 

0.02250 
0,04V41 -6,03801 Ot 12634 0,lOYlY -0,0.3659 OcO0616 op.07603 
n.obS93 -01n3341 

o* 09585 n,i.539t) 
O,Oblj35 0.20796 o,tl94i -0,03310 

0.03368 n.lCllj sO,O1362 
O,O1)5li( 0.05253 ~n.OA249 

o,aina7 
0,04Vlj: n12P63b O#llO.39 -0.00470 0,06067 O.OllYY -Oq04502 

0.08332 0.00664 0.17941 O,U4247 
O”O1151 O*O59UZ 

O,C57GO G,ri530~ O,o2191 -0.04229 -0204n61 

ns03ti39 
(J,O3@47 O.a4620 0.15614 O,O'7655 -0,00597 0,029no -0.olb79 -0,nbSEio 

fl.002oB 0,04355 O,OB993 0.09279 U.11746 O,OlYnA -0.nlB67 -0,068Bt) -0p04058 
-Q100b7h 0,00~12 0.02961 0.12'/6~ 0.05297 -I~,ti55S6 -0.12476 -0103539 
?0,04.353 O,Olbrib 

0,01cn3 0,06441 
U, 00444 O,OlAS4 DO,02331 O,11815 u,o5lrllt 

rO,OS922 (r,O3/24 
-O,O9414 -U,O9070 -Ot04S72 

a0,03563 
(1,02R29 -0,@0562 -nr03dlU 

O,G0540 r0*04412 
O*O737'f O,O6945 -0,096OY -CI~O~SM -oe0312i 

0.01Y66 0,00221 0,0039S OrOb507 -0,06779 -0,075Sb -n,Oj'122 
-0,04570 ~0,81747 -I),oosni o,Oo545 -orn36ni -O,OsB4'1 O,0719O -a,07033 -n,04~42 Or01649 
r0,O2603 rOqi)4B24 -0,03122 -0,047ln -O,n7342 -0,07Rby 
t0.02404 ~O,UbdlJ ‘O.01836 +0,01530 ~O~lcilO~ qn,n1999 

o,nOo72 -n,n4678 -O~oc)o5o 0.08743 

+Oq057S6 t0~08897 co100717 r0,02154 
0,01623 -0,03U61 0,001JR n+09l93 

-Gel2764 -OaOS176 -0~l~ir35’j ci;,o65YB O.04759 
-0,0bZS9 4goeb93 

0, ti6622 

eOqOP755 -a,On2uZ 
0,016H9 -0.03260 -0.11100 -0,05445 -0.001~9 -0,06284 
n+O3972 10,02B‘57 -ocOB640 -0.0220~ 

n,ou7u4 0. (Ii757 

10,01428 ~0~0061.~ 
0.03483 -n,otiOr 0,08075 Oe06258 

h.Ob217 
0.01043 ?0*67735 

o,O62GJ -0,05643 O,Gi263 O,OiiY7 -Q,00101 
0.0414@ -n,oOB6b -0,OhA25 -O,O2326 ~0~03579 -0,01382 

n*OB46S 0106158 

IO,Oi8bQ -0,03i!iv 0,OlbRl -(I,05254 -O,O7384 sO,tii7$i ~0.07132 -0,04’/97 
0,06599 O*03471 

-0,0164l -Or02d4~ O.Ol69O mO,M1)93 -Q FOft051 O,OnBs3 d-i.05015 -a+06537 
O,OH792 -0~003e7 
nc09i09 1oen2AB5 

rO”00931 4”!!O646 O,OOU46 o,uno91 sn.05120 O,lOObY -0,n2461 
-O,O2175 0*0265s 

-0,12p22 r0,10561 -o,no596 
0.lb969 -0.B3524 

*0,02385 n,OoBYj 
U.OU329 r6,131)94 -Oe06941 -D,OO145 -0.01920 -O;O4695 

0~06703 -0,n4Oti 
-0,022uB !iJrbl522V 

0.OO93b ro,11317 -Q,Q7227 -0,UlB29 -6.ll557j -lr,0S4OI 
0,00198 -0,0HH73 d.06243 t0,0204%--OzOS487 -O,ot?i)16 neQb852 -Ovc16YJ2 



TABLE 3 - LISTING OF THE FIRST 20 EIGENFUNCTIONS (continued) 

~IGENFUNCTIONS 1 - 10, PUINTS J - SO I THE U CDHPLINENT 

EJGENFUNCTION 

1 2 3 ri 5 b. 7 8 v 10 

r06600 -0.07743 
PO8946 -0,b7105 
pO8Hib -0.07;ibP 
pO~902 -0,ileboa 
qO9047 -Or06799 
!0!27b -0,08312 

,09660 -0,bEItiSrl 
O.ld689 -0,i)AUtJb 
O.10308 -0,084liS 
O,lO679 -O,b~612 
O~lirb51 .O@OPLibY 
OS10939 IOp09h59 
b,l1324 -0~08652 
O,10907 -0pURQ64 
0.107bu d.Of+i)l~ 
0,10999 -0p09fz(, 
0,10875 -0.OR'i31 
O.llt?lS -0*8Pflltl 
O,li)855 -n.ori&sb 
Qrll/32 -ocOR’14!, 
Or11330 -0.07’lGl 
O,iO74S -0;0751', 
0.10546 -0.072i1~ 
Oili -l+bsl b 
O,OR451 -0,OSi)YO 
0,0913u -II*04964 
0,10443 -0~054bu 
rl,li)7hO -0,os~ds 
0,11196 -0.06'idS 
0.11362 -O,Oh3b6 

0~11854 -o;i~u~@7 
O,1279O -a,o3~40 
C.l2178 -O.i4ilb 
O( 11.6R2 -0phP272 
O,lf!921 -o*i)4435 
o.l.Ca2b -O.cl!jltih 
0.09999 -orri5373 
0.09878 -O.lrbli-J 

ucla49a -0.o!a,4es 
0.1018H -0.05j66 
O,lb2b3 -0,05ti%b 
0.09859 -o,bs;i45 

0.07562 0,Ofl443 dc05637 -O,O9798 rO.05196 
O,OHl28 0,0769b -0,05877 

l 0,10021 -0.08565 rO,085OO 
-O,O9848 10.08333 ~o,ov487 -O,O8679 cO,07H33 

O*O8379 0,067OO -Or07093 -0,0963? -0.08531 4,08756 dell991 lo,06447 
Q.ORSl2 0,0725S rnpQbb57 -O,ti9814 -O,07565 ro,u3345 -0.11229 -Oq06650 
OF 07999 @,O7736 -0,07873 rO,lOlC?~ -0.07576 =0,03736 -0,li)356 -0,0819tl 
oco799u 
O.ORBRU 

0,68178 -0,n727y -o,O9125 -0mO6434 -0,06110 ~0,08850 -O,O7537 
o,CJf+721 -01064b9 sO,O7929 -0.05539 -0, 

O.OA001 

08149 -O,OF)b68 ~0~04605 
O,@R~86 -O,O79ul -O,ObRR6 -O,i)5295 -0,lOBUl -0.04376 -O,O5933 

ii.0771 9 0,07l’RS -Oe09S4-i -0,OllbbS -O,o70R4 -0,09563 O,oii252 .rO,O8265 
Or06979 O,O7173 -0909797 -O,OZY7S -0,0s719 30,1!337 0,0~540 10,06612 
0,070tl~ o,074Oll rOr09570 -0.04779 -0eOb157 -O,llb30 0,03681 cOe0622U 
0.6bl5U 0.07977 -Oc07743 -0.05246 -0.O6316 ~0~09220 bw02424 +0107262 
0.0707A O,O6421 -0,o7402 -Oe045b5 eO.06416 rot10036 O,O2484 IO,i)5456 
0107660 0,OblbJ -OFOR -O,02!i65 FO.04665 rO,lo742 O*O2933 r0,03600 
0,Q6693 O,O4358 -Own715f+ -0,OOR5’! co,01785 *Ocl1610 0,02685 O,OOlb7 
0,6602fJ 0.02572 -~~o71H3 0,01697 l O,O1553 -o,oB3:3l Qd03912 0103343 
0.osm3 0,03574 -0.O9661 0,02472 -0eO0702 -0,O'jlOS O,Oj856 O,O5lbb 
0,06516 0.03873 -n,@fl496 0,0339f! O,Olt!19 -0,Obi91 0.02636 0,lOOOB 
0.0404.3 0,047SB -0*07370 0.04299 0.04519 o,o2U3 ro,62786 O,o23OO 0.0512'1 G,0341b -0.117072 

O,OO41ii 

0.04313 O,OO529 0,01686 OOI:;;;;: 

0.04539 Q,62757 -O,oRlRS 
0.O3119 6,02256 cocot-i77b 0,02672 

8,;;;;; O,O3075 O,01889 0:1518i 
n,o1022 o,OSu5S 0,1917u 

I).03647 0,OZbbj -0,ORl53 0,035u3 0:Ob79b O,O3Yl6 
rl.0266s 0,015i)5 -ocou939 nc07s1i 

0.01576 0,16943 
0,05051 0,01519 O,Ob945 0115511 

0.01134 n,aQEJba -n,n5’730 
0,025bFl -n,o322ti rn,nh2srl 

n,nB92l O,Obi3‘?7 
0,0VObb 0~05052 

a,02853 0.05313 0*12156 
0,02550 O.Ol4tlO a,09192 

0.015S3 -0,04167 -o.oaHbb 0.1041: 0.01914 0,01427 -O,OlSu7 0,085OY 
0,03069 -0,046YA -01000u3 0.09601 0*02718 0,0179tl 0,024SS O,13679 
O,O2059 -0,Ob~r03 O.OlSbR 0,101’7! 0.04007 0,02505 On03977 O,lhR96 
0.01’787 =C,Ob072 -Q100H3b G,O78Ul 0 . G '5 10 8 

0,OUSRi) 
0103368 0,06Oc)l5 

0;03471 
0,12386 

0.00234 -0,07Sb7 -0,OoR7H 0,055so 0.03RUt) 0@10503 
0.00283 -6,0624I -0,01611 
i,,OlIRH -0.lJ7934 -0,OlRl5 

o,c517y O,OU522 O,09601 O,OS634 Oc109$9 
0,n12s1 0*03692 0,09472 O,U485V 0,08735 

i’.Q2403 ..h,I?93b9 -G*UP229 -0,00043 OFOti322 
0.03b99 -0.GRYl3 0.00832 0.00775 

O,OV733 0,03i?96 fl,O6369 
0.03985 

il.04363 -0.10b43 O,F?739 
0,102UP 0,03948 O@Oi2Ol 

O,D1933 0.06765 
0.05674 -O,lF481 0.03664 O,flZRALI 0.04759 

0,11506 -O,0034l 0qOOO42 

0.05704 
0.11417 -0*01051 OeO0596 

G,O5354 -O.llrLiOA t1~05295 0.114548 
aen 

0,09121 -0,02262 0,00044 
0.05399 -C.lllOS o.o2Rh5 I)*04747 
al05439 

0.07694 -O,04862 de04187 
m(i,17491, 0.035JR ‘09 n1 Chl 0,05389 O.O!id?? -1?.08Ul8 -0,06t!SO 

0,0U969 -li,l3649 0e06071 -0,01653 0,04122 0,05691 -0,Oi;tl74 
-0.02343 

*Q,lo723 
0.052u4 -(i,143HS O*Oh101 fi.02634 
0.05976 -(I,16532 0,ObOUI -0.Ol99ir 

O,n6036 -0.O141H +oe08Blil 
0, n2594 0.05867 -0,01782 -0,11622 

iJ,OhjUY -6.15429 0.nAu20 -fl@o!tii?Y 0,02744 
o,nt;4ls -o,Ju023 n.oc)hlh -0.012si, 

0.05787 -0,02@12 -oe13093 
O.Ol2lH n,n2777 -0.n19m -Oc,!2mB 

0.054h7 -O,j4844 0.llhSS O,OlH12 0.00091 u,o2991 -O,Ob/Yb -0e14333 
u.03309 -0.13795 0.12401 0.01224 -0.lr1774 0,05RO2 rJ"000‘73 -0”15082 
t1.03RH2 -0,154HR D.JlhA3 0.00752 -0,022stI -0.00517 -o.noL?51 -0,121&w 
o,n3828 -0,1409u 0.09595 o;OIlH.5 -0.02699 O,Un433 Oln067h -Oq1225,3 
0,04362 -0.13367 n.07950 0.01321 -0.01306 0.01193 o.cJis13 -n,lsaeu 
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TABLE 3 - LISTING OF THE FIRST 20 EIGENFuNcTIONS (concluded) 

klGkiGFU:4CTIOkfiS 11 - 20, Poth(TY 101 - 150 I THE ti COMPONENT 

11 12 13 14 l’j lb I7 18 19 20 

O,ji,hb7 
-0, n4926 
-a,04917 
-n,oasG? 
-a, 029ArJ 
-O,O2379 
dJ.03233 
-a;a1752 
cOqO0537 
-Or04023 
-O,o2950 

-0.19fiH1 n,14119 
-U,lbiih? 11,14633 

O,lRbl3 -(t,fJH963 -O,O9413 o,o1297 o,O2248 so.10424 -0,07ilt) 

-o,os649 
O,12483 o,o.9197 -0,0702~ 0,166d2 C,llBbt) -O,la65fi (I,01244 

-1!!iJ3S42 
0,12257 0,03'/69 O.06482 O,fJliO~ o,ilYb9 0,06269 tO,12641 0,OYb87 
F).OlJh(, -0.f~3lJ29 0.03H9.3 -O,Oh075 o,do575 o,oo725 -011!335 o.L0617 

0.03074 -0~ohfllo -O,O4942 
o,l25y -(I,OROa:3 -il.l!'t'ilR 

~.f~all!i -0.06235' -0,03922. de14716 (I*02531 -U,OOl25 
il,Ohl)HS 0,0'313J -I),08046 -O,O4837 O"O925Y 

O,I‘IOr!4 -i;,055R5 -0,05120 O.OS1hl-l O,O74Ofj lb,13642 O,ii783O 
0,&0997 
(~~11485 

a.18222 -O.08415 -O,O4322 -0.O35SY 
0,0~901 

O,lZHbO -0.15715 -u,o618c1 0.01581 0,16564 
O.UHOhli -0.j3553 Q,1)O130 -0q10'/52 
o.aoi7o -0.21427 

a,08541 -0105750 -O,O7720 -O,o026U a010127Q 
0~02445 -0,19086 0~112794 a.oboeb -o,o5515 -O,12467 d,i5774 

-O,0274A -0.19884 -0.nlb.77 -0.10962 -O.OlYSb 0.11363 0.00432 -0~08807 rOei264b 
-0,OlblR -0.16bl2 -0.04862 -6,U'IubR -Or02464 0;CJYOb Oe2%602 
-0.03529 

-l&O4655 O,OlO90 *0;12905 
-0.14379 -1).053:$4 -0.04039 -n.O4160 -O,OO52& 0,26b:56 

-0.02803 -OF19572 -o,os5Rn -ib,Oyil20 
O,OlY12 O"Otl620 -0.0'7486 

O.O23Hb ~0,0!.!90 0.14719 0,19345 0,1~s11 
o;o-rsns -O.03065 -Q.O3388 Tr.10232 

0~08201 
O,OlOU9 -0.175R~ -(1.(~5.38: -n;ir72'JS 0,14555 rJ,1n42e 
o,Ont?b8 -0.11797 -ci.o215n -ll,OJ2/l 
O"O31h3 -O+lU7'lB 

O.lhlS2 -0,02!a54 -O,l\Oh8 ,*O,O1720 0,2S24+ 0,12797 
0.0302R -0.00727 0.0849') 

O,Q8b44 -@,0723c' 
OF01 721 ~0~21758 -il,O%Y76 0.23240 -O,05A84 

o.nl'76b -O.O1H42 -o.n240\ -lr,02385 -0.27231 O,Oh2YO O,Ob;r87 -oq11522 
-0.00172 O.Ob30A O.!)337@ -ti.OH’IH~ -0.10070 -0,OQlhn -OF22832 0,14493 -0.27549 

O,i3d7O 
-0,10915 

4,01361 O,lU2;ib -4,,126’15 -O.0fi:i’,h -0.62h72 -0,113762 0*087O9 
0*07304 O~ORbU3 neO~b75 -i~;12117 -0.Ob906 

fi,lbi?bi -!J,171b4 
0.14571 -13.31969 0,10!325 -0.11578 0,11476 

0.07570 0.12Zb2 o,o')w9 O.ijSii'l3 -0,025lb -0,0751jl or1 3063 -Ii213046 o,o4790 -0,02055 
l111SS3b 0.1SbS3 U.OUlBfl -0.12669 -n.O:iYi;H O,lH34Q 0.27644 -O,14985 0,ObOZb -0+OlOlS 
O"ll57h 6,ilj~dl n . n II 0 06 - 0 , 0 0 2 7 1 O,19544 -0.lS5YO 0,0424Y -0q15444 

-Oe06s98 -0.oRi71 
- 0 , 1 4 !1 s 5 0,163bfI 

-0,07982 0.06572 -1),DCih95 -O,C~lt%ar -0,01852 -0,047flY 0.08777 -0,04621 
-Olrl102h -lJ,bR3Y3 -O.l197R 0.202h7 -0.0340O !lt!150;rj -kJ,OOO99 o.os151 I),06137 O,OY699 

0,01222 -0.lO13t-1 -0.60064 a.Obi?tR O.ObH45 o,nlsfil -‘l.l!O!Y 
OpOltJb9 rO.OFlAbb 

fir01952 -0,19862 O,i0997 
0.lOUR4 -n,/4039 0,1SHR2 -O,4h'):S4 -0.2l684 -0,o‘IBUb -Oz21Yn4 -0,07494 

0.03224 O,O9013 (~,I6631 -n.2082rl 
?a102359 

0~23190 -R,!Y464 -0.Os281 -O,OlS14 -0.12775 -0,197YO 
O.l.SbO6 (r,lLla96 -ll,i'O443 0.12139 -0,irSIRr' 0*14874 -0.03b52 -0.05243 -Oer)122b 

-0.16921 0,23105 l),10503 -il,04hh4 0.!217'j -0,0r)lhl (l,190\11 OF11122 0,12d9H O,18955 
-O,ZF446 
-0;2ti119 

0.13273 0.1'75oo -0.Oh039 
\J;jh9nli 

n.o4307 -n.os703 0.09103 
0;OOh:58 -6,041bll 

(1.065e4 
o.02249 0,04/2R -0.09589 

-0c232OY -OrlY’+uS 
o;m30 

0.15503 
O;O>32S 

0.0891LI 
O;ObSW 

cJ,139r)cr l),lO2d2 0105469 0.O79!)5 -u.17952 -u.159a0 cr,lo’136 0~0f30dB 
eO,19207 -0.lbbkf1 O,lOC~Yl cl.17593 O.07155 0.!1441, -0.121YR -0.14807 -0.05114 -0.09252 
-o*iy272 -Qgi)422fl o,oun59 O.il923 -o.O25Ql 0,063ol -0.00S95 -0.22937 -O,O42i9 -0+06196 
-O,o4584 OF03539 -fl,l25b6 @.10559 -0.0759O 0,13538 -0*01949 -0;12290 rtl.15bai 0.14224 

0*05734 Q~iB2200 -0.1.5H21 O,OJZ99 -0.10953 a,lassi -0~0791h 
ct,o2390 -0,USi.5l -0,19Oh9 -I),07414 -n*toru4 OqQ5543 

o,o3511 Or00278 o.l:laR 

-0.OLjtfi7 -0,141b'j 
0,Ollb7A 0,lBbtt. -0,OSSbO O,00677 
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5.2 The Sampling Properties of the Expansion Coefficients 

Forming-a 100 X 150 matrix F of the 100 ensemble functions and a 

I 150 X 20 matrix E of the 20 first eigenfunctions and performing the 

matrix multiplication 

FxE=B 

gives us the 100 X 20 matrix, B, consisting of the expansion coefficients, 

a n' A histogram is then calculated for each of the 20 columns and the 

corresponding probability density function estimated. The goodness of 

the fit can be tested by various tests. 

In this analysis, a subjective study of the histograms revealed 

Gaussian probability density functions for the expansion coefficients, 

so that the only statistics necessary are the means and the variance 

of the 20 columns. If we had prepared the ensemble in such a way that 

EIf,) = 0, we would have had 

E{an) = 0 

(5.2) 

E{anak} = X,6nk 

and due to the Gaussian assumption all the probability density functions 

would be knoti, in a statistical sense, because h,, which equals the 

variance of the nth expansion coefficients, is known. In this analysis, 

the relation (5.2) provides an internal check on the calculations because 

for one expansion coefficient, the variance plus the squared mean must 
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equal the corresponding eigenvalue. Table 2 gives the mean and the 

variance for the 20 expansion coefficients. As would be expected, 

only the few first have a mean significantly different from zero. 

The mean and the variance for a particular expansion coefficient 

are only estimates of the true values, and by standard statistical 

methods we can obtain 95% confidence limits for both quantities; in the 

application of the model we can investigate the effects of choosing 

values inside as well as outside these limits. 

The apparent Gaussian distribution of the expansion coefficients 

needs further discussion, especially since Smith (1971) reports he found 

them to be uniformly distributed. 

When the domain of definition is extended to (a,=~) and R(s,t) = 

R(s-t), then (4.3) becomes 

I R(s-t) '#n(s) ds = $$,(t) 
-co 

but in this limit the eigenvalue spectrum becomes continuous, and we 

can write 

I R(s-t) $(w,t) dt = X(w) $(w, s) 

with the solution Q(w, t) = eeiwt. Hence, X(w) is the Fourier transform 

of the correlation function, the usual power spectrum. And so the 

expansion coefficients become in the limit equal to the usual Fourier 

coefficients, which for all practical purposes can be assumed to have a 

Gaussian distribution. 
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5.3 The Probability of Occurrence 

A direct.assessment of the probability of occurence of generated 

time sequences which are critical to the system being studied is not a 

straightforward procedure with the model developed here. 

However, in order to analyze the problems let us consider the 

theoretically simpler model in which an ensemble of k records each of 

N points, k > N, with the correlation function R(s,t) has led to N - 

eigenfunctions each specified at N points and to N probability 

density functions, one for each of the N expansion coefficients 

al, a2, . . . , aN. : Artificial time histories are generated using the 

eigenfunctions and by sampling in the probability density functions. 

The generated series will also have the correlation function R(s,t), 

and the first probability to be determined is Ehe probability that the 

systems we are concerned with will encounter turbulence with the given 

R(s,t) l This probability can presumably be estimated by considering 

the measured ensemble in relation to the total collection of empirical 

data about turbulence. 

The next probability we must determine is the probability of ob- 

taining a critical time sequence by sampling in an ensemble of functions 

with the correlation function R(s,t). 

Let us assume that all the critical functions with this correlation 

function are in the subspace fiA of the total phase space 0, where 

:3’ 

fiA: (5 5 a1 2 al + Aal, . . . . aN 5 “N 5 aN + A+ 

R: (-03 < 
5 < CQ, . . . . . -03 < a 

N < rn) 
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Here Prob(al,a2, . . . aN & Sz) = 1,and the probability we want to 

determine is Prob (aI, a2, . . . aN E S2A). In order to limit the 

setrch for fiA, we realize that we are only interested in probabilities 

that exceed a certain limit, PE say. The part of 1;2 in which the 

higher order expansion coefficients differ significantly from zero 

is yery likely to be associated with very small probabilities (see 

Table 2), hence it is justifiable to search for QA only in the space 

SIB - (a,, a2, . . . a m" am+l = 0, . . . . aN = 0) 

where the limits for al, . . . . a m are connected with PP. 

Suppose that in addition to the lack of correlation expressed by 

(5.2), the coefficients are also Gaussian distributed, an assumption 

justified in Section 5.2. Then the coefficients are independent and 

after having established by trial and error the boundaries of RA the 

probability we are searching can then be estimated from the Gaussian 

probability density functions pl, p2, . . . pm, 

al+ha 

Prob(y, a2, . . . . am E QA> = 1 plldalarI 4a2 . . .arz dam 

al a2 a 
m 

Mainly because of computer limitations, we are forced to generate the 

time-sequences in small pieces which are patched together and then to 

perform transformations in Fourier space in order to move energy to low 

frequencies. Hence it is obvious that the above described procedure for 

obtaining the probability of occurence of critical time sequences cannot 



198 

be applied to the model.formed in the preceding sections. We will 

have to rely on physical arguments, not as Fch to calculate proba- 

bilities, but merely to es'tablish whether the generated critical time 

series appears to be physidally realizable. 

;. . 
1 J 



199 

6.0 DESCRIPTION OF THE TURBULENCE RECORD 

.The turbulence record was obtained by analog instrumentation during 

the 1969 Kansas Experiment by N. E. Busch and S. E. Larsen (Larsen (1971), 

Busch and Larsen (1972)). It was measured at 5.66 meters height 

(between 15:31 - 16:31 on 30 July, 1968). The stratification was 

slightly unstable, the Richardson number being -0.101. The mean wind 

speed was 6.56 m/set and the variances for the fluctuations u, v, w, and 

T (temperature) were 2.414 m2sec -2 ; 1.904 m2 set -2 ; 0.359 m2 secz2; 

0.761" C2. 

The analogue signal was later digitized at 1000 Hz and transferred 

to digital tape. For the purpose of this analysis, the signal was 

further block averaged over 100 points to give a 10 Hz signal. A 

sequence of 50 minutes was selected giving 30,000 data points for each 

of the components u, v, and w (the temperature data was not used in this 

study). Figure 6.7 shows the whole record with 1 second block 

averaged values, and Figure 6.8 shows 100 seconds of the record with 

10 Hz values. In the last figure, all the data has been normalized 

to mean zero and variance 1. The analogue signal was reversed in time 

during the handling and so we will expect our model to generate time re- 

versed turbulence. A simulated record should then be time reversed 

before applied in practice. 

In order to assess whether the generated turbulence behaves like 

real turbulence or not, a set of criteria were proposed in section 1. 

One of the criteria requires the model to produce signals that possess 

the notable observed statistical characteristics of observed turbulence. 
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In the rest of this section some of these char lcteristics will be 

estimated from the turbulence record and the I r .i", will be compared 

with those obtained from a similar analysis by Dutton and Deaven (1971) 

(hereafter referred to as DD). 

6.1 Probability Densities and Distributions 

The use of the probability functions is extended to powers of the 

velocity variables, here to the fourth order. Figures 6.1 and 6.2 

show the probability density and distribution functions for the 

standardized velocity components. In each graph, the solid line 

illustrates the Gaussian behavior with the curves for higher orders 

derived from the transformation 

Py (Y) 121 = Px(x) 

DD reached the conclusion that the frequency functions departed 

from those of a Gaussian process from a set of figures which showed a 

behavior quite similar to Figures 6.1 and 6.2. 

6.2 Increments 

Using one of the component series, for example u, we can construct 

a new series 

(6.1) u(x,L) = u(x) - u(x + L) 
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Figure 6.1 Kansas turbulence. Probability density and 
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logarithmic vertical axis denote power of 10 
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by means of which we can analyze spatial variations in the turbulence. 

The timestep At = 0.1 set is transformed into a length step Ax using 

Taylor's hypothesis: Ax = uAt = 6.56 m set -1 0.1 set = 0.656 meters. 

The structure function, Figure 6.6, is defined with these 

increments as 

(6.2) D(L) = tiju2(x,L)1 

and it should be dependent only on internal conditions of the flow. 

The statistical properties of the increments are important in 

several ways. First they characterize the spatial variations in the 

turbulence--hence the distribution of increments provides insight into 

the uniformity of spatial structure of the velocity fields; second, if 

the series u(x) are Gaussian, the distribution of increments would also 

be Gaussian; and third, they are useful in the study of whether the 

data is self-similar in the sense of Mandelbrot as described in 

Section 3. 

The probability functions for the increments are shown in Figure 6.3 

and Figure 6.4 for lags 0.66, 6.6, 66, and 666 meters. Again, the curves 

are very similar to those given by DD, demonstrating that the increments 

with small lags deviate more sharply from Gaussian behavior than the 

increments at large lags. 

6.3 Measures of Intermittency 

As argued by DD, the non-Gaussian behavi-or appears to be intimately 

related'with the intermittency of the turbulence and they provided fur- 

ther measures of the intermittency. Dutton, Lane, et al. (1969) define 
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an intermittent process as a process where a relatively large fraction 

of the variance is contributed by a relatively small fraction of the 

total record. DD then considered how moments such as the.variance, 

skewness, and kurtosis accumulate as a function of the fraction of 

the total record length. These statistics are shown in Figure 6.5. The 

numerical algorithm can be thought of as a process in which the record 

is rearranged so that the observations are ordered by size; the 

curves are then obtained by summing the appropriate power of these 

observations and plotting the result against the fraction of the 

observations used in the sum. DD showed that the same curves can be .;' ,.., I.. 
obtained from the probability density function as follows: 

th The fraction of the 2m moment (m = 1,2 ,...n) contributed by 

observations with absolute value greater than ly 1 is 

-Id 

F2m(~) = 1 j x2m py(x)dx + (-=x2- py(X)dxl 

-co 

F2mC~)= 
Id 

cv 

and the fraction of record occupied by observations with absolute value 

greater than lyl is 

-IYI so0 

R2m(~) = 
I 

pyWx + ’ py h> dx 

-03 
Y? 

For odd.moments we have the contribution by observations with 

values less than y 
a.4 - 
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Y 
Fptil(y) = 

I 
x2m+1 p,(x)dx [ 1 x2*' py(x)dx,-' 

-r*) -00 

T 
'R2m+l(~) = P,(X) dx 

J 

Thus, if the density functions p,(x) are known, then both F and 

'R can be determined as function of y and so F is known as function 

of R. 

Also, these figures are very similar to those given by DD with 

only a slight departure from the Gaussian case for the variance and 

a distinct deviation for the skewness and the kurtosis. The difference 

found between the components can also be found in some of DD's figures. 

6.4 Rxceedance Statistics -_ 

Among the various exceedance statistics that can be used for 

studying statistical structures, DD choose N(y)/N(O) which is the 

ratio of the number of crossings of value y with positive slope per 

unit time to the number of crossings of zero with positive slope. 

Figure 6.5 shows N(y)/N(O), and again we find the same behavior as 

found by DD. 

6.5 Spectra and Covariance Functions 

The analysis of turbulence relies heavily on the theory of second 

order processes, the covariance function being one of the most important 

characteristics of such processes. From the covariance function, a 

generalized spectral representation can be obtained, as shown in 
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Section 4, where the shape of the eigenfunctions can be argued to 

be of some significance. Further, the eigenfunctions gave a unique 

representation of the correlation function, and in the limit where we 

could assume stationarity and infinite integration limits; this 

representation produced the well-known fact that the correlation function 

and the spectrum constitute a Fourier transform pair. 

By means of correlation functions and spectra, the analyst is able 

to investigate the sequence of events throughout an enormous amount of 

data by looking at smooth curves. Although the correlation functions 

and the spectra contain the same amount of information, the spectra 

are normally best suited for a subjective analysis because they reveal 

how the variance (or the covariance) is distributed over wave numbers 

and hence how the energy is distributed on scales. 

The autocorrelation functions R R uu' vv' Rww and the cross- 

correlation functions R uv' uw' R Rvw are shown in Figure 6.6 on a 

logaritmic lag scale. As found in DD, the correlation of the horizontal 

components u and v is higher in the midrange than that of the vertical 

component w. The RUw function shows the expected behavior to tend 

to a negative value significantly different from zero at small lags 

indicating a downward transport of horizontal momentum (the Reynolds 

stress). Also shown on the figure is the structure function D(r), 

where for a spatially homogeneous process, the relation between R(r) 

and D(r) is easily found to be 

(6.3) D(r) = 2a2 (1 - R(r)) : 

a relationship that can be seen to hold well for the curves in Figure 6.6. 

L 
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The spectra Su, S v* SW and the cospectra Suw are shown in 

Figure 6.7. The most pronounced characteristic of the spectra is the 

-S/3 slope exhibited by the u and v components over one decade of 

frequencies. The w component is seen to flatten out at low frequencies. 

The cospectrum Cuw gives the wavenumber decomposition of the Reynolds 

stress responsible for the transformation of mechanical energy and hence 

is an important statistic to model correctly.. The cospectrum Cuw is 

seen to be significantly different from zero at frequencies 0.01 - 1, 

indicating the active scales in the downward transport of momentum 

to be of the order 600 m to 6 m. 



Figure 6.7a Kansas turbulence. First third of record; 
not normalized. One second averages plotted 
versus time; the numbers on the horizontal 
and vertical axis denote seconds and meters 
per second respectively 



Figure 6.7b Kansas turbulence. Second third of record; 
not normalized. One second averages plotted 
versus time; the numbers on the horizontal 
and vertical axis denote seconds and meters 
per second respectively 



Figure 6.7~ Kansas turbulence. Last third of record; 
not normalized. One second averages plotted 
versus time; the numbers of the horizontal 
and vertical axis denote seconds and meters 
per second respectively 
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Figure 6.8 Kansas turbulence. Time history consisting of 
1000 one tenth of a second averages plotted 
as normalized magnitude versus time. .The 
numbers on the horizontal axis denote seconds 
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7.0 TESTING AND FURTHER DEVELOPMENT OF THE MODEL 

Two experiments with the model are discussed in this section. The 

generation of the turbulence follows the generation scheme given in 

Section 5.3. 

As a first step we choose to generate the series in sequences 

of length 30 set (= 300 datapoints). This is six times the length of 

one of the component parts of the eigenfunctions and our choice is 

obviously motivated by the way the ensemble f,(t) was constructed. In- 

side every 30 second interval we construct the turbulence in pieces of 

5 seconds. One of the pieces, selected at random, is created as active 

turbulence and the five other pieces as passive turbulence. 

The differences between the two experiments are as follows: 

1. The uniformly distributed random series consisting of integers 

between 1 and 6 which give the position of the 5 set active turbulence 

piece inside the 30 set sequence is sampled for each experiment. 

2. A Gaussian distributed random series is sampled to obtain 

the expansion coefficients for each experiment. 

3. In experiment 1, the mean and the standard deviation for the 

expansion coefficient distributions are the same as given in Table 1. 

In experiment 2, the standard deviations were changed to (ol, a2, 03) = 

(8.0, 8.0, 4.0). 

4. The alteration of the expansion coefficients in the five 

passive intervals was done by multiplying each of the three first 

expansion coefficients by a uniformly distributed random number 

between 0 and 1 for experiment 1 and 0.5 and 1 for experiment 2. 
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In both experiments, the third expansion coefficient was, for 

every 5 set generated interval, multiplied by +1 or -1 picked at 

random. The justification for this procedure lies in the shape of the 

eigenfunctions and the distributions of the expansion coefficients. It 

follows from Table 2 that in contrast to all the other expansion 

coefficients ~13 has a much larger mean than standard deviation, implying 

much greater probabilities for obtaining positive rather than negative 

values. Figure 5.1 shows that most of the contribution of the third 

eigenfunction is the peak in the w-component, which in creating of the 

ensemble f,(t) was chosen positive. But we want to generate negative 

gusts as well as positive, and therefore the + 1 multiplication of ~13 

was introduced. 

7.1 Statistical and Sequential Characteristics of the 'Iwo Experiments 

Some 8200 datapoints were generated for each component for each 

experiment and then subjected to the analysis applied to the turbulent 

record in Section 6. The result is displayed in the Figures 7.1 - 7.18. 

The probability densities and distributions in Figures 7.1 - 7.14 

show no large deviations from experiment 1 to experiment 2 and a 

comparison with the Figures.6.1 and 6.2 reveals the generated turbulence 

to exhibit the expected non-Gaussian behavior. 

The distribution of increments at lags 0.6, 6, 66, and 666 meters 

given in the Figures 7.5 - 7.8 all show the turbulence behavior from 

the Figures 6.3 and 6.4 with small lags deviating more sharply from 

Gaussian behavior than large lags. 
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The accumulated moments as given by the Figures 7,9 and 7.10 

show some differences from experiment to experiment to the actual 

turbulence, Figure 6.5, but no serious discrepancies. This is also 

the case for the exceedance plot. 

The auto- and cross-correlations and the structure function, 

Figures 7.11 and 7.12, do not differ much between the experiments. 

From experiment to the actual turbulence, Figure 6.6, there is, 

however, one discrepancy; the experimental u and v fall off much too 

rapidly. 

The relation between the correlation function R(T) for a stationary 

time-series and the correlation function RT(T) calculated over the 

length T is given by 

(7.1) RT(r) = R(r) (1 - 

The generated 5 set pieces will on average have the same 

correlation function as the ensemble from which the eigenfunctions were 

obtained. This ensemble was obtained from the turbulence record, and 

although it is not justifiable to call this ensemble stationary, it 

seems that the transformation above can explain the main differences 

between Figure 6.6 and Figures 7.11 and 7.12, especially when it is 

remembered that the triangular window plots like an exponential function 

on log-linear axes. 
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The generating interval was 5 set, and with a mean wind speed of 

-1 6.6 m set this corresponds to a length of 33 in, and so after a lag 

of 33 m the autocorrelation should drop to zero, which actually is 

the case. For the real turbulence, the zero value is reached around 

600 m. With this knowledge, we would expect the generated turbulence 

to look different from the turbulence recorded for the u and v components. 

The cross-correlations agree well for lags less than 30 m, and it 

is worth emphasizing the behavior of the important uw correlation. The 

remarks on the autocorrelation can also be applied to the structure 

function. 

The u, v, and w spectra are plotted on the Figures 7.13 - 7.15 to- 

gether with the turbulence spectra. The u and the v spectra fall off 

like the turbulence spectra with a -5/3 slope for frequencies larger 

than 1 Hz. Between 1 Hz and 0.03 Hz (scales 6.6 m to 330 m), the 

epxerimental spectra exceed the turbulence spectra, and from 0.03 Hz 

and less the opposite is true. We could have expected a pronounced 

peak in the experimental spectra at 0.2 Hz due to the generation of the 

turbulence in 5 set pieces, but this is not the case: the effect, if 

any, has been spread over more than one decade of frequencies. 

The w-spectra follow the same pattern, although they seem to 

coincide much better except for high freqencies where the experimental 

spectra fall off too fast. This probably means that the eigenfunctions 

from 21 and up still have some significant high frequency features to 

add to w, but not to u and v. 

The implication of the transformation 7.1 would be a folding of the 

spectra with a (sin u/u)~ function, which except for some end effects 

will tend to preserve power law behavior. 



232 

0.00 I 

U - SPECTRA 

0.001 0.0 I 0.1 I IO 

FREQUENCY set” 



100 

IO 

I 

0.1 

0.01 

KANSAS 
--- EXP. I 
. . . . . . . . . . . . E)(P* 2 

0.001 I . I 

0.00 I 0.01 0. I I . IO 

FREQUENCY set? 



234 

IO 

I 

0.1 

0.01 

0.00 I 

KANSAS 
--- BI 
. . . . . . . . . . . . . . B 2 

0.001 0.0 I 0.1 I IO 

FREQUENCY set” 



235 

The .agreement between the uw-cospectra in Figure 7.16 and those 

in Figure 6.7 are very good. 

The whole turbulence time history, block averaged from 10 Hz to 

1 Hz, is displayed in Figure 6.8. The two experimental turbulence 

records were normalized to have the same means, zero, and variances 

as the turbulence record at 10 Hz and then block averaged to 1 Hz. 

As is evident from the former discussion, the differences between 

the two experiments are small, and we will therefore further on 

confine our attention to experiment 1. Figure 7.17 shows 1000 set 

of the experimental turbulence and as could be expected from the 

discussion of the correlation functions and the spectra, the u and v 

components have too much variation in the mid-frequency range, but 

apparently none at low frequencies. 

Figures 6.9 and 7.18 display 100 set of the turbulence and the 

experiment respectively; all data at 10 Hz and normalized with mean 

zero and variance 1. As before, the w-components agree very well and 

so do the u and v components at intervals less than 10 seconds. The 

effect of patching the 5 set intervals together is seen to cause some 

excessive large jumps, a deficiency which has to be corrected, possibly 

by establishing a patching procedure. 

7.2 Spectral Shaping 

In the final development of the model, some spectral shaping 

seems unavoidable, first because of the problems of generating energy 

at low wavenumbers, and secondly, because in practical applications 

care must be exercised so that the energy is maximized at the appropriate 

wavenumbers. 
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Figure 7.16 Co-spectra of the standardized u- and w- 
components of two samples of Kansas 
turbulence (top), experiment 1 (middle), 
and experiment 2 (bottom). Each sample con- 
sists of 8192 points (819.2 set) 



Figure 7.17 Experiment 1. Time history consisting of 
1000 second averages, normalized to the 
same variance as the turbulence record. The 
numbers on the horizontal and vertical axis 
denote seconds and meters per second 
respectively. 



Figure 7.18 Experiment 1. For further details see the 
legend for figure 6.8 
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Several methods exist, probably the most well-known being to 

let the spectra match the behavior of the.von Karman or the Dryden 

spectrum (Smith, 1971, Fichtl, 1973)k Another approach is to use 

the semi-empirical spectral formulaeb obtained,by the micrmeteorological 

researchers (Busch, 1973). 

The fair degree of coincidence of the measured spectra and the 

experimental spectra leads us to the,conclusion that in order to shape 

the low wavenumber end of the experimental spectral we could as well 

shape them over the whole wavenumber range using the measured spectra. 

This was accomplished in the following way: 

Calculate the discrete Fourier transform for one component at a 

time and let the series of Fourier coefficients be given by 

ao,bo,al,bl,....aN,bN : the measured turbulence 

cO,dO,cl,dl,-cN dN , the generated turbulence 

eo,fo,el,fl,....eN,fN : the generated and shaped turbulence 

where 

(7.2) 
(a 

2 l/2 1 (a 
(ei,ff) = ici 

12 + bi i2 + bi 
2 l/2 

1 

(c i2 + dg 
2 l/2 * 
) 

di-& 2 * 21/2' 
i +di) ._ 

which gives 
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(7.3) ei2 + fi2 = ai + bi2 

and 

f di i -=- 
e i ci 

so that we have changed the spectral shape of the generated turbulence 

to that of the measured turbulence, but we have preserved the phase 

angles from the generated series. The series (eiVfi) is then back 

transformed to obtain the series in the time domain. 

The effects of the shaping are shown for experiment 1 in 

Figures 7.19 - 7.26. The autospectra and the autocorrelation are not 

shown as they obviously have to be the same for the measured record 

(the autocorrelation function approximately). The agreement between 

the various statistical and sequential characteristics for the real 

turbulence and the simulated turbulence are evident. 

One desirable effect of the shaping is that it seemingly smooths 

out the effect of patching the generated 5 seconds together, and thereby 

relaxing the requirement for a patching procedure. 

7.3 Summary Conclusions and Recommendations 

In this study several tasks were undertaken all with the primary 

goal of producing an operational turbulence simulation model. 

In Section 2, earlier attempts to use the Proper Orthogonal 

Decomposition in turbulence modeling were reviewed and the conclusions 

summarized in Table 1. The experience gained through these studies 

suggested the development of'the present model. 
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Figure 7.24 Experiment 1 after spectral shaping. Top: 
Co-spectra of two samples of the standardized 
u-and w-components. Each sample consists of 
8192 points (819..2 set). Bottom: cross 
correlation for the standardized data plotted 
as functions of the lag on a logarithmic scale. 
The plotted 1 refers to the u- and v- 
correlation, the 2 to u-w, the 3 to v-w. The 
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power of 10 



Figure 7.25 Experiment 1 after spectral shaping. For 
further details see the legend for 
figure 7.17 



Figure 7.26 Experiment 1 after spectral shaping. For 
further details see the legend for 
figure 6.8 
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Because the Proper Orthogonal Decomposition method eventually 

has to'extract information from one or more actual records, it was 

argued in Section 3 that under some justifiable assumptions of 

selfsimilarity and spectral power-laws, this does not limit the 

generated turbulence to fixed length and time-scales. 

The theory behind the Proper Orthogonal Decomposition and its 

application in pract;lce was briefly outlined in Section 4. The 

argument for applying this theory in the model went as follows. From 

earlier studies we know that it is essential to .model the "surprise" 

in turbulence. The proper Orthogonal Decomposition provides us with 

a method to represent this phenomenon by a set of orthogonal functions 

in which the first function has the closest resemblence in a least- 

square sense to large gusts. The motion between these large gusts can 

also be represented by a set of orthogonal functions, which if. provided 

by the Proper Orthogonal Decomposition, give a unique optimal ex- 

pansion of a stochastic process. Making the simplifying assumption 

that the motion in the gust intervals consists of a gust structure plus 

an orthogonal stochastic process allowed us to concentrate the 

analysis to certain selected gust intervals. 

The construction of the model was described as a two part process, 

first the analysis scheme to obtain the orthogonal functions, and 

second, the generating scheme which uses these functions. The two 

schemes were summarized at the end of Section 4. 

The results of the analysis scheme were discussed in Section 5 and an 

investigation of the eigenfunctions revealed the first few to be a 

mixture of gust structure and non-gust-motion with a decreasing emphasis 

on the gust as the order of the eigenfunctions increases. The dis- 

tribution of the expansion-coefficients were estimated to be Gaussian. 
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The actual turbulence record was subjected to.a fairly detailed 

analysis, reported in Section 6, in order'to provide a set of statistics 

for comparison with those of the generated turbulence. The calculated 

statistics were compared with those obtained in other studies to ensure 

the representativeness of the record. The statistics were chosen with 

emphasis on the importance of the non-Gaussian behavior of turbulence 

processes as well as the importance of the second order sequential 

statistics. 

Section 7 describes two experiments that were performed with 

the model and compared the generated turbulence with the actual 

turbulence. The analysis was performed .twice before and after spectral 

shaping. The main conclusions before the shaping were: 

1. The two experiments differed no more than actual turbulence 

records. 

2. The non-Gaussian behavior was well-modeled. 

3. The sequentially dependent statistics and characteristics 

were modeled well on time scales less than the length of the eigen- 
. 

functions. 

4. The time history showed some excessive jumps due to patching 

generated intervals together. 

The spectral shaping was accomplished by transforming the gen- 

erated turbulence into series with spectra equal to those of the actual 

turbulence, and preserving the phase angles during the process. After 

the spectral shaping, the experimental turbulence appeared to be as 

close to real turbulence as any practical model might produce. 

However, the model is not perfect and for future work we would 

recommend that: 
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1. M&e. turbulence records be used in the'analysis. 

2. The length of the ensemble functions selected to determine 

the eigonfunctions to be chosen with more considerations to the 

integral scales of the process, 

3. Several choices of the feature to be tested, for example 

certain events in the uw and uvw correlations, 

4. The. probability density function and the time interval be- 

tween the events should be estimated properly from the turbulence 

records, 

5. The effects of preparing the selected ensemble in different 

ways should be investigated, 

6. The difficult choice of the transformation of the density- 

functions for the first eigenfunctions could be eased by extending 

the analysis so that two sets of eigenfunctions are calculated, one set 

for the integrals with special features and one set for all other 

intervals. both sets could then be used in the generating scheme, or 

they could be mixed, depending on an investigation of the similarities 

between the two sets. This procedure would provide a test of whether 

a characteristic feature exists in the chosen ensemble, because if the 

two sets of eigenfunctions show close resemblance, this is clearly not 

the case. 

7. Altemative.~- spectral shapings should be investigated. 

The actual computer programs that generate the turbulence are 

rather simple and not very time consuming, and so a lot of experiments 

can easily be performed, in order to establish how the properties of 

the generated turbulence vary with changes in the model. However, it is 

a laborious task to make a thorough study of each experiment as can be 
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judged from the number of figures in this report. A solution might 

be to investigate just a few experiments with extreme variations in 

-the parameters, and then to test other experiments by applying the 

generated turbulence in practice and judging the outcome. 
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8.0 SOME CONSIDERATIONS ON USE.OF THE KARBUNEN-LOEVE 

EXPANSION IN DATA ANALYSIS 

Erik L. Petersen 

The Proper Orthogonal Decomposition Theorem has been used by an 

increasing number of researchers in a variety of fields to investigate 

time or space series for quasi-deterministic structures. Among them 

are Lorenz (1956), Lumley (1965), Dutton, et al. (1968), (1969), (1971), 

Holstram (1970), Jasperson (1971), Busch and Petersen (1971), just to 

mention a few. 

Let us here be concerned with whether quasi-deterministic behavior 

appears in the functions in'{f(t)) where'(f(t)) is an ensemble of second 

order real valued random functions of the parameter -QJ < t < 00 and where 

E {f(t)) = 0 

(8.1) E {f2(t)) = 1 

E' {f(s)f(t)) = R(s,t) 

. 
Let {f,) be subensembles formed from {f) by assembling the sequential 

values over intervals of length T of some functions f&If}. For example, 

if 

(8.2) H(x) = 

then H(x+a)f(x) would be in one of the ensembles (fT) for every a. For 

ease of computation, each function in (fT) is redefined over the domain 

'10, Tl. 
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If we suppose a quasi-deterministic component appears in cf), 

then the question is hoti to select a criterion that will give a 

function 4(t), 0 5 t 5 T, that resembles the deterministic part of 

the functions in an optimum manner. 

Several measures of resemblance are possible; the one we will 

choose is quadratic and has been discussed previously (Lumley, 

1965, Dutton, 1969). 

Let {fT) be one of the subensembles of. {f). Then we define 

" (8.3) X = Elf I 
11; f(t) 9(t) dt12 

T 

The function C#I we are seeking maximizes X over the collection of all 

subensembles if,} for various values of T. Adopting other criteria 

in order to determine the quasi-deterministic behavior given by C$ 

would in general lead to other approaches, but it is the criterion 

above that brings the Karhunen-Loeve expansion into the analysis. This 

expansion known to have some very general properties, and this in turn 

justifies the criterion. 

The question whether there exists a unique solution to (8.4) such 

that it is possible to find a subensemble determining a function O(t) 

which gives an absolute maximum of A will be considered in the last 

part of this section. 

If a maximum is found, let {fT)* be the associated ensemble and let 

{f T )- be constructed as 

(fTY- = Cf,) - If,)* 
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which is to say that {fT)- are subensembles formed from'(f) by 

assembling sequential values over intervals of length T which have not 

been used in the.construction of' if,)*. 

We will now make the'assumption that almost all the information 

contained in' If) can be estimated from 4(t) and' (fTj-. A necessary 

but not a sufficient condition for this assumption to be true is 

that R(s,t) does not differ significantly from zero outside Is-t! > T. 

Let us further assume that we need a representation of the sequential 

characteristics of' {fT]- which is as economical as possible. Such a 

representation may be found by expanding (fT)- in complete orthogonal 

systems, if it is possible to find an expansion that gives a good 

approximation to the ensemble.functions by an economically small number 

of terms. 

The optimal expansion of a random function, the Karhunen-Loeve 

expansion, is suitable for this purpose, The expansion is optimal 

in the sense that the series truncated at any point minimizes the 

integrated mean square deviation between the actual and.the ,approximated 

random functions. Any other expansion using the same number of terms 

cannot have an Integrated mean square deviation which is less. This 

is to say that minimizing the error e(N) 

I N 
hfe(N)) = k{ If(t) - C oln $,(t)12 dt) 

n=l 

leads to an expansion (see e.g. Dutton, 1969) 

(8.4) f(t) = F (w $ (t) 
kc1 k k 
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where the functions used in this expansion q,(t), are the eigenfunctions 

,of the Fredholm integral equation 

J T 
(8.5) R(s,t) $,(t) dt = $ $kb) 

0 

and 

03.6) $@) $+)dt = 6kR 

(8.7) E {oln am) = An 6 nm 

(8.8) an = 
I 

f(t) $,W dt 

where the An's have been arranged in a non-increasing sequence, 

This follows from the Proper Orthogonal Decomposition Theorem, 

Loeve (1955), which states that a mean-square continuous random 

function f(t) defined on a closed interval 0 < t < T, has the - - 

decomposition (8.4) with the properties given by (8.6), (8,7), and 

(8.8) if and only if Xn are the eigenvalues and $n(t) the orthonormal 

eigenfunctions belonging to the correlation function R(s,t), and thus 

are solutions to (8.5). The theory is based on Mercer's Theorem, which 

states that a non-negative definite function, R(s,t) continuous over 

the closed interval 0 5 s,t 5 T has the expansion 

(8.9) Rb,t) = c-x, $p) $,*(t) 
n 

where An and $,(t) are the solutions of (8,s) and the asterisk denotes 

a complex conjugate. 
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Solving the equations (8e5) - (8.8). gives us the Karhunen-Loeve 

expansion, sometimes referred to as a generalized spectral represen-. 

tation because of the lack of correlation between the coefficients 

of expansion. 

From the equations (8.7) and (8.8) we get 

E' {+ T2 
I 

f (t)dt} 
n 

0 

which shows that the eigenvalues reveal the fraction of the total 

variance which is explained by the associated eigenfunction, 

Our problem now is to find if,]*, and thereby {fT)- and 0, by 

solving the variational problem as given by (8.3). Unfortunately, we 

are not able to do this in full generality. We cannot analytically 

find the subensemble'IfT}* that maximizes X over all subensembles 

(fT); however, if by some other methods we can establish' if,}* we can 

solve (8.3) for the function $I which maximizes X over the ensemble 

If,}*. An approximate solution could be obtained by calculating X and 

plotting it for various choices of. If,}, but the work involved is 

staggering. 

Let us then assume that we are able to select a subensemble 

(fT) subjecti ve y which is not far from the optimizing subensemble 1 

if one exists. 

Applying the techniques of the calculus of varitions to (8.3) to 

find the maximizing function, +(t), leads to the integral equation: 

I 
R(s,t) $&) dt =. 'k +,(') 
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and we observe that the function most like each of the.functions in the 

ensemble {f,) is determined by the Karhunen-Loeve expansion of If,), and 

we have e(t) = @l(t). The expansion can be interpreted in the following 

way: $1 is the single function that explains the most variance in the 

ensemble, but it does not explain all of the variance, so we form a new 

ensemble of functions {fT - al $1) and find the one function most like 

the residual function; the answer will be G2 and so we consider a new 

ensemble {fT - al Q1 - a2 $2} and so on. 

With the assumptions made through this section we are now able to 

represent the sequential characteristics of {f) by the two orthonormal 

systems, JI, and $,, together with the sampling properties of the cor- 

responding expansion coefficients. 

The two systems can be reduced to one system if further assumptions 

are made: if the quasideterministic structure we are seeking occurs 

over the length T, and if this structure is orthogonal to the rest 

of the process taking place over the length T, and if this structure is 

given entirely by the first eigenfunction $1, then the ensemble 

jfT - al oll will have the same properties as {fT}- hence 9, will be 

the same as $,, $, as G3 and so on. Such an assumption was made in the 

construction of the model discussed in the preceding part 

of this report. 

But does there exist a unique solution to (8.3) such that it is 

possible to find a subensemble IfTj* determining a function $(t) which 

gives an absolute maximum of A? AII example will show that such an 

ensemble does not exist in general. 
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8.1 The.Rarhunen-Loeve Expan.s.i.on of-a F_irst Order Autoregressive Series 

For the example we will use a stationary time series f(t) with the 

correlation function R(s-t) = e -c+sI ) a > 0. This is the correlation 

function for a first order autoregressive series. 

f(t) = R(r=1) f(t-1) + e(t), t = 0, 1, 2, m-0 

where E(t) is normally distributed with E(E(t)) = 0 and 

El&(t) E(S)) = 6s t "E2. This form of a correlation function is 
, 

quite often a good approximation for geophysical time series despite 

its lack of microscale, i.e., R(r) is not differentiable for-r= 0. 

A very obvious reason for choosing R(r) is that it is then possible 

to find an analytic solution to the Fredholm integral equation (8.5). 

Let us first prove a theorem that often can be useful. 

Theorem: The Rarhunen-Loeve expansion of a stationary second-order 

process yields eigenfunctions that are either odd or even. 

Proof: From Mercer's Theorem, (8.9) we have 

(8.10) R(s-t) = 1 An $$s) 4',(t), 0 5 s,t 5 T 
n 

which upon replacing s with T-s and t with T-t gives 

(8.11) R(-s+t) = C An Gn (T-s) $, (T-t) 
n 

But R is an even function so that R(-s+t) = R(s-t), and thus combining 

(8.10) and (8.11) gives 
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R(s-t) = F' An"4p ‘t$t) = ?., x, (&CT-s) $, (T-t) 
n n 

From the uniqueness of the .Rarhunen-Loeve‘expansion it then follows 

immediately that for every 0 5 t 5 T 

$p = 2 $.,(T-t) 

so that the eigenfunctions are either odd or even with respect to the 

point T/2. This..concludes the proof. 

Although the converse is not true because a set of odd or. even 

eigenfunctions only ensure that we have a correlation matrix symmetric 

with respect to the two main diagonals, one could use the theorem with 

care to estimate the non-stationarity of a certain ensemble. If, for 

example, the eigenfunctions appear to be even or odd from the m th 

eigenfmction on, and if the first m-l eigenfunctions.explain P% of the 

variance, then a reasonable hypothesis would be that approximately P% 

of the variance in the ensemble could be due to instationarities. 

Proceeding with the example, let us consider an ensemble over the 

closed interval 0 5 t 5 T with the following properties 

E. 1; I T 
f(t) dt) = 0 

0 

E I+ 
I 

T 2 f (t) dt} = 1 

0 

E ii 
I 

T 
f(t) f(t-r) dt} = e +I 

0 
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The qigenfunctions of the carrelation function are determined by 

I * e-aIt-sI $J n (s)ds = X 4 (t1 nn’ 
0 

or, dropping the subscript n 

(8.12) t -a(t--8) e ‘$(s)ds + 
I 

T e-a(s-t) #‘(s)ds 

0 t 

Differentiating twice, using the rule for differentiating under the 

integral sign, we have first 

A+'(t) = - a J te-a(t-s) $(s)ds + ci Te-a(s-t) $(s)ds 
0 J t 

and then 

h)"(t) = a2[ J t e-a (t-s) T 
$(s)ds + e*(S-t)$(s)ds]-2a$(t) 

0 t 

so that 

(I” (t) -I- 2a ; a3 4(t) = 0 

As a first case, we consider 

2a - a2h 2 
x 

<o=>x>- 
a 

The general solution to the differential equation is 
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440 - C e .l at + C2ewat 

but it is easily seen that no coice of Cl, C2 can make +(t) either 

odd or even over the interval (0, T) hence, no solutions exist for 

x > 2/a. 

As a second case, we have X < Z/CC. The general solution is now 

(b(t) = Cl cos(wt) + C2 sin(wt), 0 = hqx 

or 

$(t) = A sin(wt + 81) 

which we can write as 

$(t) = A sin (w(t -$I + 0) 

To determine A, w, 8 and X we have the int,egral equation, (8.12), 

and the condition of orthogonality (8.6). After some algebra we find 

(8.13) $,W = c sin (wn(t - ;) -I- F) 
n 

and the eigenvalue spectrum is given by 

(8.14) An = a2 +*; 2 
n 
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where the w n 's are solutions to the equation 

(8.15) tan(wnT) = - 
2a.wn 

01*-w* n 

where 

(8.16) -~ (n-On < w < E 
T n T' n = 1,2,... 

The normalization of the ensemble gives 

(8.17) +xn=l 
n 

The integral scale for the process f(t) is defined as 

I= J co eIYlTl d= = 1 a 
0 

A variable C is introduced by 

(8.18) C = aT (= $) 

I 

which is seen to be the ratio between the chosen length of the eigen- 

functions and the integral scale. 

Introducing C into (8.14) and (8.15) yields: 

x 

(8.19) $ = 2c 

C* + (wll T)* 
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(8.20) tan (wn T) = 7 
*C (“, T) 

C* - <wn T)* 

we can now numerically solve (8.17) - (8.20) to give h,/T, n = 

1, 2, . . . . . as a function of C. The result is shown on Figure 8.1 

on a logarithmic scale. 

As expected, it is not possible to find, in a statistical sense, 

an ensemble {fT}* that gives an absolute maximum for Al because 

A 1 /T -f 1 for T, C + 0. 

It is thus seen'that applying the Karhunen-Loeve expansion to a 

certain selected ensemble and finding that the first eigenfunction 

accounts for a tremendous amount of the variance does not automatically 

ensure that a characteristic structure is revealed by the first eigen- 

function. 

Before we conclude this example, we will show an interesting 

relationship, in this case, between the Fourier spectrum and the 

eigenvalue spectrum. 

The normalized Fourier spectrum of f(t) is given by 

J 
co 

(8.21) S(w) = f e-c"=e-iwT d-c=2 a 

0 ' a2 + w2 

and the normalized eigenvalue spectrum by 

Xn=.hn(wn) =p 2a 
a + w2n, 

, 
(n-!>n < w < 5 

T n T 

and then all the eigenvalues are, except for a constant factor, lying 

on the curve given by the Fourier spectrum. 



a 
d 

a 113 1. on la 00 
TIUESCACE / fNTEfRMSCALE 

Figure 8.1 Curves showing for each of the first six 
eigenfunctions of a first order auto- 
regressive series the amount of normalized 
variance explained as function of the ratio 
of the length of the eigenfunctions and 
the integral scale of the series. The 
curve for eigenfunction n-l-1 is always below 
the curve for eigenfunction n 
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The mean value theore? gives 

Tr n- 

J 

T 

(n-1); 

2 a =- (n-1)7r 

T a2 +w ” T' 
<W&C F 

11 

where w II + w n for T + 03. 

Two approximate *ormulas: 

x 2 A,- clr 
T ~ arc tan 2 

C + n (n-l) R* 

for wR + wn 

m? .2, 
C $ +; arc tan F 

n=l 

8.2 The Urhunen-Loeve Expansion of a Bandlimited White Noise Process 

A slightly different approach for solving the integral equation (8.5) 

with an exponential kernel can be found in Davenport and Ross (1958) and 

Pugachev (1965) and (1959). In Slepian, Pollak, and Landau (1961) a 

specially interesting case is analyzed where the timeseries is band- 

limited white noise: 

I l/2 52, jwj < 52 
S(w) = 

0, 2 IwIw-2 

The solutions to 
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T/2. 

J si;lfl$s) 4$s) ds - An $.$t) 
-T/2 

are known .as prolate spheroidal wave functions JI, 

The eigenfunctions and the eigenvalues depend only on c or say 

I 
J 

co co 

I R(r) d-c = 
J 

sin s1r dr=lv 
n-c s-i-i- 

0 0 

They depend as in the previous example only on the ratio between the 

length of the ensemble function and the integral scale of the process. 

8.3 Conclusion 

The Rarhunen-Loeve expansion (or the Proper Orthogonal Decomposition 

or the Generalized Spectral Representation) has often proved to be a 

powerful tool in mathematical-statistical analysis of random processes 

especially where advantages can be taken of the lack of correlation 

between the expansion coefficients. However, the method is not without 

disadvant,ages when compared with the usual Fourier analysis. One is 

that the eigenfunctions have to be tabulated or plotted while sines and 

cosines are well-known functions. Another is that a physical interpre- 

tation of the eigenvalue spectrum is often difficult, if possible, at all, 

in contrast to Fourier spectra where the amount of explained variance 
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is plotted versus frequency or wavenumber and hence makes direct 

reference to time. or length scales in the process being studied, 

Fourier analysis usually requires the.process to be stationary 

and ergodic whereas the Proper Orthogonal Decomposition can be 

applied to non-stationary ensembles. But in order to use the 

latter method, it is necessary to establish an ensemble, and in the 

process of doing so it is of the utmost importance to be sure that all 

the ensemble functions included are equal members of the ensemble. 

It is obvious that in order for the method to reveal a characteristic 

structure in the ensemble, the ensemble functions have to be properly 

aligned. If for example the structure is a sinusoid, there must be no 

phaseshift from one ensemble function to another. 

In this section we have outlined the theoretical basis for the 

model which was developed in the preceding sections. We believe that 

this basis can support further investigations of the potential of the 

Proper Orthogonal Decomposition in studying and modeling physical 

processes. We have also pointed to the necessity of investigating the 

statistical structure of the series being studied before it is decided 

how to create the ensemble functions the method actually required as 

input. 
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